Tumors characterized by co-expression of S100 and CD34, in the absence of SOX10, remain difficult to classify. Triggered by a few index cases with monomorphic cytomorphology and distinctive stromal and perivascular hyalinization, immunopositivity for S100 and CD34, and RAF1 and NTRK1 fusions, the authors undertook a systematic review of tumors with similar features. Most of the cases selected were previously diagnosed as low-grade malignant peripheral nerve sheath tumors, while others were deemed unclassified. The tumors were studied with targeted RNA sequencing and/or FISH. A total of 25 cases (15 adults and 10 children) with kinase fusions were identified, including 8 cases involving RAF1, 2 BRAF, 14 NTRK1, and 1 NTRK2 gene rearrangements. Most tumors showed a monomorphic spindle cell proliferation with stromal and perivascular keloidal collagen, in a patternless architecture, with only occasional scattered pleomorphic or multinucleated cells. Most cases showed low cellularity, a low mitotic count, and absence of necrosis. Although a subset showed overlap with lipofibromatosis-like neural tumors, the study group showed distinctive hyalinization and overt malignant features, such as highly cellular fascicular growth and primitive appearance. All tumors showed co-expression of S100 and CD34, ranging from focal to diffuse. SOX10 was negative in all cases. NTRK1 immunohistochemistry showed high levels of expression in all tumors with NTRK1 gene rearrangements. H3K27me3 expression performed in a subset of cases was retained. These findings together with the recurrent gene fusions in RAF1, BRAF, and NTRK1/2 kinases suggest a distinct molecular tumor subtype with consistent S100 and CD34 immunoreactivity.
Tropomyosin receptor kinase (Trk) inhibitors have shown high response rates in patients with tumors harboring NTRK fusions. We identified 4 NTRK fusion-positive uterine sarcomas that should be distinguished from leiomyosarcoma and undifferentiated uterine sarcoma. NTRK rearrangements were detected by fluorescence in situ hybridization (FISH) and/or targeted RNA or DNA sequencing in 4 undifferentiated uterine sarcomas with spindle cell morphology. Because of histologic overlap with leiomyosarcoma, TrkA and pan-Trk immunohistochemistry was performed in 97 uterine leiomyosarcomas. NTRK1 and NTRK3 FISH was performed on tumors with TrkA or pan-Trk staining. We also performed whole transcriptome RNA sequencing of a leiomyosarcoma with TrkA expression and targeted RNA sequencing of 2 additional undifferentiated uterine sarcomas. FISH and/or targeted RNA or DNA sequencing in the study group showed TPM3-NTRK1, LMNA-NTRK1, RBPMS-NTRK3, and TPR-NTRK1 fusions. All tumors were composed of fascicles of spindle cells. Mitotic index was 7 to 30 mitotic figures per 10 high power fields; tumor necrosis was seen in 2 tumors. Desmin, estrogen receptor, and progesterone receptor were negative in all tumors, while pan-Trk was expressed in all tumors with concurrent TrkA staining in 3 of them. TrkA and/or pan-Trk staining was also seen in 6 leiomyosarcomas, but these tumors lacked NTRK fusions or alternative isoforms by FISH or whole transcriptome sequencing. No fusions were detected in 2 undifferentiated uterine sarcomas. NTRK fusion-positive uterine spindle cell sarcomas constitute a novel tumor type with features of fibrosarcoma; patients with these tumors may benefit from Trk inhibition. TrkA and pan-Trk expression in leiomyosarcomas is rare and does not correlate with NTRK rearrangement.
With the advent of next-generation sequencing, an increasing number of novel gene fusions and other abnormalities have emerged recently in the spectrum of EWSR1-negative small blue round cell tumors (SBRCTs). In this regard, a subset of SBRCTs harboring either BCOR gene fusions (BCOR-CCNB3, BCOR-MAML3), BCOR internal tandem duplications (ITD), or YWHAE-NUTM2B share a transcriptional signature including high BCOR mRNA expression, as well as similar histologic features. Furthermore, other tumors such as clear cell sarcoma of kidney (CCSK) and primitive myxoid mesenchymal tumor of infancy (PMMTI) also demonstrate BCOR ITDs and high BCOR gene expression. The molecular diagnosis of these various BCOR genetic alterations requires an elaborate methodology including custom BAC FISH probes and RT-PCR assays. As these tumors show high level of BCOR overexpression regardless of the genetic mechanism involved, either conventional gene fusion or ITD, we sought to investigate the performance of an anti-BCOR monoclonal antibody clone C-10 (sc-514576) as an immunohistochemical marker for sarcomas with BCOR gene abnormalities. Thus we assessed the BCOR expression in a pathologically and genetically well-characterized cohort of 25 SBRCTs, spanning various BCOR-related fusions and ITDs and YWHAE-NUTM2B fusion. In addition we included related pathologic entities such as 8 CCSKs and other sarcomas with BCOR gene fusions. As a control group we included 20 SBRCT with various (non-BCOR) genetic abnormalities, 10 fusion-negative SBRCT, 74 synovial sarcomas, 29 rhabdomyosarcoma and other sarcoma types. Additionally we evaluated the same study group for SATB2 immunoreactivity, as these tumors also showed SATB2 mRNA up-regulation. All SBRCTs with BCOR-MAML3 and BCOR-CCNB3 fusions, as well as most with BCOR ITD (93%), and all CCSKs showed strong and diffuse nuclear BCOR immunoreactivity. Furthermore, all SBRCTs with YWHAE-NUTM2B also were positive. SATB2 stain was also positive in tumors with YWHAE-NUTM2B, BCOR-MAML3, BCOR ITD (75%), BCOR-CCNB3 (71%), and a subset of CCSKs (33%). In conclusion, BCOR immunohistochemical stain is a highly sensitive marker for SBRCTs and CCSKs with BCOR abnormalities and YWHAE rearrangements and can be used as a useful diagnostic marker in these various molecular subsets. SATB2 immunoreactivity is also present in the majority of this group of tumors.
Understanding tumor immune microenvironments is critical for identifying immune modifiers of cancer progression and developing cancer immunotherapies. Recent applications of single-cell RNA sequencing (scRNA-seq) in dissecting tumor microenvironments have brought important insights into the biology of tumor-infiltrating immune cells, including their heterogeneity, dynamics, and potential roles in both disease progression and response to immune checkpoint inhibitors and other immunotherapies. This review focuses on the advances in knowledge of tumor immune microenvironments acquired from scRNA-seq studies across multiple types of human tumors, with a particular emphasis on the study of phenotypic plasticity and lineage dynamics of immune cells in the tumor environment. We also discuss several imminent questions emerging from scRNA-seq observations and their potential solutions on the horizon. Expected final online publication date for the Annual Review of Immunology, Volume 39 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.