Tumors characterized by co-expression of S100 and CD34, in the absence of SOX10, remain difficult to classify. Triggered by a few index cases with monomorphic cytomorphology and distinctive stromal and perivascular hyalinization, immunopositivity for S100 and CD34, and RAF1 and NTRK1 fusions, the authors undertook a systematic review of tumors with similar features. Most of the cases selected were previously diagnosed as low-grade malignant peripheral nerve sheath tumors, while others were deemed unclassified. The tumors were studied with targeted RNA sequencing and/or FISH. A total of 25 cases (15 adults and 10 children) with kinase fusions were identified, including 8 cases involving RAF1, 2 BRAF, 14 NTRK1, and 1 NTRK2 gene rearrangements. Most tumors showed a monomorphic spindle cell proliferation with stromal and perivascular keloidal collagen, in a patternless architecture, with only occasional scattered pleomorphic or multinucleated cells. Most cases showed low cellularity, a low mitotic count, and absence of necrosis. Although a subset showed overlap with lipofibromatosis-like neural tumors, the study group showed distinctive hyalinization and overt malignant features, such as highly cellular fascicular growth and primitive appearance. All tumors showed co-expression of S100 and CD34, ranging from focal to diffuse. SOX10 was negative in all cases. NTRK1 immunohistochemistry showed high levels of expression in all tumors with NTRK1 gene rearrangements. H3K27me3 expression performed in a subset of cases was retained. These findings together with the recurrent gene fusions in RAF1, BRAF, and NTRK1/2 kinases suggest a distinct molecular tumor subtype with consistent S100 and CD34 immunoreactivity.
Tropomyosin receptor kinase (Trk) inhibitors have shown high response rates in patients with tumors harboring NTRK fusions. We identified 4 NTRK fusion-positive uterine sarcomas that should be distinguished from leiomyosarcoma and undifferentiated uterine sarcoma. NTRK rearrangements were detected by fluorescence in situ hybridization (FISH) and/or targeted RNA or DNA sequencing in 4 undifferentiated uterine sarcomas with spindle cell morphology. Because of histologic overlap with leiomyosarcoma, TrkA and pan-Trk immunohistochemistry was performed in 97 uterine leiomyosarcomas. NTRK1 and NTRK3 FISH was performed on tumors with TrkA or pan-Trk staining. We also performed whole transcriptome RNA sequencing of a leiomyosarcoma with TrkA expression and targeted RNA sequencing of 2 additional undifferentiated uterine sarcomas. FISH and/or targeted RNA or DNA sequencing in the study group showed TPM3-NTRK1, LMNA-NTRK1, RBPMS-NTRK3, and TPR-NTRK1 fusions. All tumors were composed of fascicles of spindle cells. Mitotic index was 7 to 30 mitotic figures per 10 high power fields; tumor necrosis was seen in 2 tumors. Desmin, estrogen receptor, and progesterone receptor were negative in all tumors, while pan-Trk was expressed in all tumors with concurrent TrkA staining in 3 of them. TrkA and/or pan-Trk staining was also seen in 6 leiomyosarcomas, but these tumors lacked NTRK fusions or alternative isoforms by FISH or whole transcriptome sequencing. No fusions were detected in 2 undifferentiated uterine sarcomas. NTRK fusion-positive uterine spindle cell sarcomas constitute a novel tumor type with features of fibrosarcoma; patients with these tumors may benefit from Trk inhibition. TrkA and pan-Trk expression in leiomyosarcomas is rare and does not correlate with NTRK rearrangement.
A hallmark of metastasis is the adaptation of tumor cells to new environments. Metabolic constraints imposed by the serine and glycine-limited brain environment restrict metastatic tumor growth. How brain metastases overcome these growth-prohibitive conditions is poorly understood. Here, we demonstrate that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is a major determinant of brain metastasis in multiple human cancer types and preclinical models. Enhanced serine synthesis proved important for nucleotide production and cell proliferation in highly aggressive brain metastatic cells. In vivo , genetic suppression and pharmacologic inhibition of PHGDH attenuated brain metastasis, but not extracranial tumor growth, and improved overall survival in mice. These results reveal that extracellular amino acid availability determines serine synthesis pathway dependence, and suggest that PHGDH inhibitors may be useful in the treatment of brain metastasis. SIGNIFICANCE:Using proteomics, metabolomics, and multiple brain metastasis models, we demonstrate that the nutrient-limited environment of the brain potentiates brain metastasis susceptibility to serine synthesis inhibition. These fi ndings underscore the importance of studying cancer metabolism in physiologically relevant contexts, and provide a rationale for using PHGDH inhibitors to treat brain metastasis.
Purpose: This study is directed at identifying the cell source(s) of immunomodulatory cytokines in highgrade gliomas and establishing whether the analysis of associated markers has implications for tumor grading.Experimental Design: Glioma specimens classified as WHO grade II-IV by histopathology were assessed by gene expression analysis and immunohistochemistry to identify the cells producing interleukin (IL)-10, which was confirmed by flow cytometry and factor secretion in culture. Finally, principal component analysis (PCA) and mixture discriminant analysis (MDA) were used to investigate associations between expressed genes and glioma grade.Results: The principle source of glioma-associated IL-10 is a cell type that bears phenotype markers consistent with M2 monocytes but does not express all M2-associated genes. Measures of expression of the M2 cell markers CD14, CD68, CD163, and CD204, which are elevated in high-grade gliomas, and the neutrophil/myeloid-derived suppressor cell (MDSC) subset marker CD15, which is reduced, provide the best index of glioma grade.Conclusions: Grade II and IV astrocytomas can be clearly differentiated on the basis of the expression of certain M2 markers in tumor tissues, whereas grade III astrocytomas exhibit a range of expression between the lower and higher grade specimens. The content of CD163 þ cells distinguishes grade III astrocytoma subsets with different prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.