The effects of nano-TiO(2) (rutile) and non-nano-TiO(2) on the germination and growth of naturally aged spinach seeds were studied by measuring the germination rate and the germination and vigor indexes of aged spinach seeds. An increase of these factors was observed at 0.25-4% nano-TiO(2) treatment. During the growth stage, the plant dry weight was increased, as was the chlorophyll formation, the ribulosebisphosphate carboxylase/oxygenase activity, and the photosynthetic rate. The best results were found at 2.5% nano-TiO(2). The effects of non-nano-TiO(2) are not significant. It is shown that the physiological effects are related to the nanometer-size particles, but the mechanism by which nano-TiO(2) improves the growth of spinach seeds still needs further study.
CRPS-I consists of post-traumatic limb pain and autonomic abnormalities that continue despite apparent healing of inciting injuries. The cause of symptoms is unknown and objective findings are few, making diagnosis and treatment controversial, and research difficult. We tested the hypotheses that CRPS-I is caused by persistent minimal distal nerve injury (MDNI), specifically distal degeneration of small-diameter axons. These subserve pain and autonomic function. We studied 18 adults with IASP-defined CRPS-I affecting their arms or legs. We studied three sites on subjects' CRPS-affected and matching contralateral limb; the CRPS-affected site, and nearby unaffected ipsilateral and matching contralateral control sites. We performed quantitative mechanical and thermal sensory testing (QST) followed by quantitation of epidermal neurite densities within PGP9.5-immunolabeled skin biopsies. Seven adults with chronic leg pain, edema, disuse, and prior surgeries from trauma or osteoarthritis provided symptom-matched controls. CRPS-I subjects had representative histories and symptoms. Medical procedures were unexpectedly frequently associated with CRPS onset. QST revealed mechanical allodynia (P<0.03) and heat-pain hyperalgesia (P<0.04) at the CRPS-affected site. Axonal densities were highly correlated between subjects' ipsilateral and contralateral control sites (r=0.97), but were diminished at the CRPS-affected sites of 17/18 subjects, on average by 29% (P<0.001). Overall, control subjects had no painful-site neurite reductions (P=1.00), suggesting that pain, disuse, or prior surgeries alone do not explain CRPS-associated neurite losses. These results support the hypothesis that CRPS-I is specifically associated with post-traumatic focal MDNI affecting nociceptive small-fibers. This type of nerve injury will remain undetected in most clinical settings.
The effects of nano-TiO2 (rutile) on the photochemical reaction of chloroplasts of spinach were studied. The results showed that when spinach was treated with 0.25% nano-TiO2, the Hill reaction, such as the reduction rate of FeCy, and the rate of evolution oxygen of chloroplasts was accelerated and noncyclic photophosphorylation (nc-PSP) activity of chloroplasts was higher than cyclic photophosphorylation (c-PSP) activity, the chloroplast coupling was improved and activities of Mg2+-ATPase and chloroplast coupling factor I (CF1)-ATPase on the thylakoid membranes were obviously activated. It suggested that photosynthesis promoted by nano-TiO2 might be related to activation of photochemical reaction of chloroplasts of spinach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.