Fluid catalytic cracking (FCC) has been the primary processing technology for heavy oil. Due to the inferior properties of heavy oil, an excellent performance is demanded of FCC catalysts. In this work, based on the acid extracting method, Si-modified pseudo-boehmite units (Si-PB) are constructed in situ and introduced into the structure of kaolin to synthesize a Si-PB@kaolin composite. The synthesized Si-PB@kaolin is further characterized and used as a matrix material for the FCC catalyst. The results indicate that, compared with a conventional kaolin matrix, a Si-PB@kaolin composite could significantly improve the heavy oil catalytic cracking performance of the prepared FCC catalyst because of its excellent properties, such as a larger surface area, a higher pore volume, and a good surface acidity. For the fresh FCC catalysts, compared with the FCC catalysts using conventional kaolin (Cat-1), the gasoline yield and total liquid yield of the catalyst containing Si-PB@kaolin (Cat-2) could obviously increase by 2.06% and 1.55%, respectively, with the bottom yield decreasing by 2.64%. After vanadium and nickel contamination, compared with Cat-1, the gasoline yield and total liquid yield of Cat-2 could increase by 1.97% and 1.24%, respectively, with the bottom yield decreasing by 1.80 percentage points.
Fluid catalytic cracking (FCC) is still a key process in the modern refining area, in which nickel-contamination for an FCC catalyst could obviously increase the dry gas and coke yields and thus seriously affect the stability of the FCC unit. From the points of surface acidity modification and Ni-passivation, in this paper, a boron-modified FCC catalyst (BM-Cat) was prepared using the in situ addition method with B2O3 as a boron source and emphatically investigated its mechanism and performance of anti-nickel contamination. The mechanism research results suggested that, in calcination, boron could destroy the structure of the Y zeolite and thus decrease the total acid sites and strong acid sites of the Y zeolite from 291.5 and 44.6 μmol·g−1 to 244.2 and 32.1 μmol·g−1, respectively, which could obviously improve the dry gas and coke selectivity of the catalyst and thus enhance the nickel capacity for BM-Cat; on the other hand, under hydrothermal conditions, boron could react with NiO and form into NiB2O4, which could obviously raise the range of the reduction temperature for NiO from 350–600 °C to 650–800 °C and thus promote the nickel-passivation ability for BM-Cat. Therefore, evaluation results of heavy oil catalytic cracking indicated that, under the same nickel-contamination condition, in contrast to the compared catalyst (C-Cat), the dry gas yield, coke yield, and H2/CH4 of BM-Cat obviously decreased by 0.77 percentage points, 2.09 percentage points, and 13.53%, respectively, with light yield and total liquid yield increasing by 3.25 and 2.08 percentage points, respectively, which fully demonstrates the excellent anti-nickel contamination performance of BM-Cat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.