We consider a class of evolutionary variational problems which describes the static frictional contact between a piezoelectric body and a conductive obstacle. The formulation is in a form of coupled system involving the displacement and electric potentiel fieelds. We provide the existence of unique weak solution of the problems. The proof is based on the evolutionary variational inequalities and Banach's xed point theorem.
This paper suggests an accurate numerical method based on a sixth-order compact difference scheme and explicit fourth-order Runge–Kutta approach for the heat equation with nonclassical boundary conditions (NCBC). According to this approach, the partial differential equation which represents the heat equation is transformed into several ordinary differential equations. The system of ordinary differential equations that are dependent on time is then solved using a fourth-order Runge–Kutta method. This study deals with four test problems in order to provide evidence for the accuracy of the employed method. After that, a comparison is done between numerical solutions obtained by the proposed method and the analytical solutions as well as the numerical solutions available in the literature. The proposed technique yields more accurate results than the existing numerical methods.
In this paper, we take into consideration the mathematical analysis of time-dependent quasistatic processes involving the contact between a solid body and an extremely rigid structure, referred to as a foundation. It is assumed that the constitutive law is fractional long-memory viscoelastic. The contact is considered to be bilateral and is modeled around Tresca’s law. We establish the existence of the generalized solution’s result. The proof is supported by the surjectivity of the multivalued maximum monotone operator, Rothe’s semidiscretization method, and arguments for evolutionary variational inequality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.