Whey powders have attracted attention for use in the food industry. The Maillard reaction is a major deteriorative factor in the storage of these and other dairy food products. The objective of the present work was to further study the Maillard reaction as related to the physical structure of the matrix, either porous or mechanically compressed, or to storage above the T(g) of anhydrous whey systems. Sweet whey (W), reduced minerals whey (WRM), whey protein isolate (WPI), and whey protein concentrate (WPC) were stored in ovens at selected temperatures. Colorimetric measurements were performed with a spectrocolorimeter, thermal analyses (TGA) by means of a thermobalance, and glass transition temperature studies by DSC. The browning order in the vials and in the compressed systems followed the order W > WRM> WPC > WPI. k(w2), the slope of the second linear segment of the TGA curve, was related to the loss of water due to nonenzymatic browning (NEB). Browning development was in good relationship with this loss of weight. In the glassy state, the compressed systems developed higher rates of browning and weight loss (assigned to NEB reactions) than the porous systems. Reaction rates in both (porous and compressed) systems became similar as (T - T(g)) increased.
The thermal stability of enzymes lactase and invertase in dried, amorphous matrices of sugars (trehalose, maltose, lactose, sucrose, raffinose) and some other selected systems (casein, PVP, milk) was studied. The glass transition temperature (Tg) was limited as a threshold parameter for predicting enzyme inactivation because (a) enzyme inactivation was observed in glassy matrices, (b) a specific effect of enzyme stabilization by certain matrices particularly trehalose was observed, and (c) enzyme stability appeared to depend on heating temperature (T) "per se" rather than (T-Tg). For these reasons, a protective mechanism by sugars related to the maintenance of the tertiary structure of the enzyme was favored. A rapid loss of enzyme (lactase) activity was observed in heated sucrose systems at T > Tg, and this was attributed to sucrose crystallization since it is known that upon crystallization the protective effect of sugars is lost. Thus, the stabilizing effect could be indirectly affected by the Tg of the matrix, since crystallization of sugars only occurs above Tg. Trehalose model systems (with added invertase) showed an exceptional stability toward "darkening" (e.g., non-enzymatic browning) when heated in the dried state to elevated temperatures and for long periods of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.