Changes in rainfall pattern have been suggested as a mechanism for the landward incursion of mangrove into salt marsh. The aim of the research was to assess the relationship between rainfall patterns and the spatial distribution of mangrove forests at study sites in Moreton Bay, southeast Queensland, Australia, over a 32-year period from 1972 to 2004. To identify periods of relatively consistent rainfall patterns points at which rainfall patterns changed (change-points) were identified using the non-parametric Pettitt-Mann-Whitney-Statistic and the cumulative sum technique. The change-points were then used to define the temporal periods over which changes to mangrove area were assessed. Both mangrove and salt marsh area were measured by digitizing aerial photographs acquired in 1972, 1990 (the year with the most significant change-point), and 2004.The rates of change in mangrove area pre-1990 (a wetter period) and post-1990 (a drier period) were estimated. A significant positive relationship was demonstrated between rainfall variables and landward mangrove expansion, but not for seaward expansion. We concluded that rainfall variability is one of the principal factors influencing the rate of upslope encroachment of mangrove. However, the rate of expansion may vary from site to site due to site-specific geomorphological and hydrological characteristics and the level of disturbance in the catchment.
Land use/cover and mangrove spatial changes were assessed for ten sites and their sub-catchments in Southeast Queensland, Australia. Two time periods were involved: 1972 to 1990, a period of relatively high rainfall, and 1990 to 2004, which was significantly drier. Aerial photographs and Landsat satellite imagery were used to map the inter-tidal wetlands and classify the land use/cover in the sub-catchments. A Maximum Likelihood Classification was used to map three types of land cover: agriculture, built-up and plantation forest. Mangroves (mainly Avicennia marina) were the focus as they have been recorded over recent decades encroaching into salt marsh. The Mangrove-Salt marsh Interface (MSI) Index was developed to quantify the relative opportunity for mangroves to expand into salt marshes, based on the shared boundary between them. The index showed a consistent relationship with mangrove expansion and change. To address problems of high dimensionality and multi-collinearity of predictor variables, a Partial Least Squares Regression (PLSR) model was used. A key finding of this research was that the contribution of environmental variables to spatial changes in the mangroves was altered following a reduction in rainfall. For example, agriculture had more influence on mangrove expansion and change during the wet period than during the dry period.
The aim of this study was to investigate the interactions of natural and anthropogenic variables at different spatial scales related to changes in mangrove distribution during a relatively wet period (1972)(1973)(1974)(1975)(1976)(1977)(1978)(1979)(1980)(1981)(1982)(1983)(1984)(1985)(1986)(1987)(1988)(1989)(1990)) and a dry period (1991)(1992)(1993)(1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004) in subtropical eastern Australia. Previous research has demonstrated that mangroves are encroaching into salt marsh. Mangrove spatial change in southeast Queensland is related generally to landscape variables especially during the relatively wet period. What has not been explored is the spatial scale of the influence under the two rainfall regimes (wet and dry) and that is the aim of this paper. Ten sites were examined at different levels of resolution including catchment, sub-catchment and two buffer zones (1000 and 500 m), under the period of relatively higher and lower rainfall. Land use was ascertained from Landsat satellite imagery using Maximum Likelihood Classification techniques. Partial least squares regression analysis was used to study the relationships between the predictor variables and the rate of change in the mangrove distribution. The research has found that the impact of land use/cover on the encroachment of mangrove into saltmarsh can vary and appears to be related to rainfall patterns, which in turn affect hydrological connectivity. A major finding of this research was that the changing spatial patterns of mangroves during the wet period was more a function of land use/cover pattern and population density at the sub-catchment level, whereas during drier periods it was more affected by the local effects of nearby land use/cover in buffer zones.
Will mangrove encroachment into saltmarshes affect saltwater mosquito habitats? To address this, we synthesized information from two perspectives: 1) at a detailed level, the immature mosquito habitat within mangroves; 2) at a more general or regional level, changes due to mangrove expansion into saltmarshes. This is a synthesis of two research projects. One showed that mosquito larval habitats in mangroves are complex, related to the detailed interactions between topography and tidal patterns and that not all parts of a mangrove forest are suitable habitat. The other, based on remote sensing and analysis of rainfall data, showed that mangrove encroachment in eastern Australia is related to both climate and human land use over several decades ). An important question emerged: when mangroves encroach into saltmarshes will they displace saltmarsh immature mosquito habitats or will they replace them with mangrove ones? There is no simple answer: it will vary with climate change and sea level scenario and how these affect the system. We conclude that mosquito management, which is locally implemented, needs to be integrated with land use planning systems, which often operate at a more general level. Journal of Vector Ecology 38 (2): 330-338. 2013.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.