Background Heavy prenatal alcohol exposure (AE) results in a broad array of neurobehavioral deficits. Recent research has focused on identification of a neurobehavioral profile or profiles that will improve identification of children affected by AE. The current study aimed to build on our preliminary neurobehavioral profile in order to improve classification accuracy and test the specificity of the resulting profile in an alternate clinical group. Methods A standardized neuropsychological test battery was administered to three groups of children: subjects with AE (n = 209), typically developing controls (CON, n = 185), and subjects with attention-deficit/hyperactivity disorder (ADHD, n = 74). We assessed a large sample from six sites in the U.S. and South Africa, using standardized methodology. Data were analyzed using three latent profile analyses (LPA) including: (1) subjects with FAS and controls, (2) subjects with AE without FAS and controls, (3) subjects with AE (with or without FAS) and subjects with ADHD. Results Classification accuracy was moderate but significant across the three analyses. In analysis 1, overall classification accuracy was 76.1% (77.2% FAS, 75.7% CON). In the second analysis, overall classification accuracy was 71.5% (70.1% AE/Non-FAS, 72.4% CON). In the third analysis, overall classification accuracy was 73.9% (59.8% AE, 75.7% ADHD). Subjects that were misclassified were examined for systematic differences from those that were correctly classified. Conclusion The results of this study indicate that the neuropsychological effects of AE are clinically meaningful and can be used to accurately distinguish alcohol-affected children from both typically developing children and children with ADHD. Further, in combination with other recent studies, these data suggest that approximately 70% of children with heavy prenatal alcohol exposure are neurobehaviorally affected while the remaining 30% are spared these often-devastating consequences, at least those in the domains under study. Refining the neurobehavioral profile will allow improved identification and treatment development for children affected by prenatal alcohol exposure.
Background Neurobehavioral consequences of heavy prenatal alcohol exposure are well documented, however the role of age or sex in these effects has not been studied. The current study examined the effects of prenatal alcohol exposure, sex, and age on neurobehavioral functioning in children. Methods Subjects were 407 youth with prenatal alcohol exposure (n=192) and controls (n=215). Two age groups [child (5–7y) or adolescent (10–16y)] and both sexes were included. All subjects completed standardized neuropsychological testing and caregivers completed parent-report measures of psychopathology and adaptive behavior. Neuropsychological functioning, psychopathology, and adaptive behavior were analyzed with separate 2 (exposure history) × 2 (sex) × 2 (age) MANOVAs. Significant effects were followed by univariate analyses. Results No three-way or two-way interactions were significant. The main effect of group was significant in all three MANOVAs, with the control group performing better than the alcohol-exposed group on all measures. The main effect of age was significant for neuropsychological performance and adaptive functioning across exposure groups with younger children performing better than older children on three measures (language, communication, socialization). Older children performed better than younger children on a different language measure. The main effect of sex was significant for neuropsychological performance and psychopathology; across exposure groups, males had stronger language and visual-spatial scores and fewer somatic complaints than females. Conclusion Prenatal alcohol exposure resulted in impaired neuropsychological and behavioral functioning. Although adolescents with prenatal alcohol exposure may perform more poorly than younger exposed children, the same was true for non-exposed children. Thus, these cross-sectional data indicate that the developmental trajectory for neuropsychological and behavioral performance is not altered by prenatal alcohol exposure, but rather, deficits are consistent across the two age groups tested. Similarly, observed sex differences on specific measures were consistent across the groups and do not support sexually dimorphic effects in these domains.
Objective To develop and validate a hierarchical decision tree model, combining neurobehavioral and physical measures, for identification of children affected by prenatal alcohol exposure even when facial dysmorphology is not present. Study design Data were collected as part of a multisite study across the United States. The model was developed after evaluating over 1000 neurobehavioral and dysmorphology variables collected from 434 children (8–16y) with prenatal alcohol exposure, with and without fetal alcohol syndrome (FAS), and non-exposed controls, with and without other clinically-relevant behavioral or cognitive concerns. The model was subsequently validated in an independent sample of 454 children in two age ranges (5–7y or 10–16y). In all analyses, the discriminatory ability of each model step was tested with logistic regression. Classification accuracies and positive and negative predictive values were calculated. Results The model consisted of variables from 4 measures (2 parent questionnaires, an IQ score, and a physical examination). Overall accuracy rates for both the development and validation samples met or exceeded our goal of 80% overall accuracy. Conclusions The decision tree model distinguished children affected by prenatal alcohol exposure from non-exposed controls, including those with other behavioral concerns or conditions. Improving identification of this population will streamline access to clinical services, including multidisciplinary evaluation and treatment.
Prenatal alcohol exposure and attention-deficit/hyperactivity disorder (ADHD) result in behavioral issues related to poor executive function (EF). This overlap may hinder clinical identification of alcohol-exposed children. This study examined the relation between parent and neuropsychological measures of EF and whether parent ratings aid in differential diagnosis. Neuropsychological measures of EF, including the Delis-Kaplan Executive Function System (D-KEFS), were administered to four groups of children (8–16 years): alcohol-exposed with ADHD (AE+, n = 80), alcohol-exposed without ADHD (AE−, n = 36), non-exposed with ADHD (ADHD, n = 93), and controls (CON, n = 167). Primary caregivers completed the Behavior Rating Inventory of Executive Function (BRIEF). For parent ratings, multivariate analyses of variance revealed main effects of Exposure and ADHD and an interaction between these factors, with significant differences between all groups on nearly all BRIEF scales. For neuropsychological measures, results indicated main effects of Exposure and ADHD, but no interaction. Discriminant function analysis indicated the BRIEF accurately classifies groups. These findings confirm compounded behavioral, but not neuropsychological, effects in the AE+ group over the other clinical groups. Parent-report was not correlated with neuropsychological performance in the clinical groups and may provide unique information about neurobehavior. Parent-report measures are clinically useful in predicting alcohol exposure regardless of ADHD. Results contribute to a neurobehavioral profile of prenatal alcohol exposure.
Prenatal alcohol exposure is associated with behavioral disinhibition, yet the brain structure correlates of this deficit have not been determined with sufficient detail. We examined the hypothesis that the structure of the anterior cingulate cortex (ACC) relates to inhibition performance in youth with histories of heavy prenatal alcohol exposure (AE, n = 32) and non-exposed controls (CON, n = 21). Adolescents (12–17 years) underwent structural magnetic resonance imaging yielding measures of gray matter volume, surface area, and thickness across four ACC subregions. A subset of subjects were administered the NEPSY-II Inhibition subtest. MANCOVA was utilized to test for group differences in ACC and inhibition performance and multiple linear regression was used to probe ACC-inhibition relationships. ACC surface area was significantly smaller in AE, though this effect was primarily driven by reduced right caudal ACC (rcACC). AE also performed significantly worse on inhibition speed but not on inhibition accuracy. Regression analyses with the rcACC revealed a significant group × ACC interaction. A smaller rcACC surface area was associated with slower inhibition completion time for AE but was not significantly associated with inhibition in CON. After accounting for processing speed, smaller rcACC surface area was associated with worse (i.e., slower) inhibition regardless of group. Examining processing speed independently, a decrease in rcACC surface area was associated with faster processing speed for CON but not significantly associated with processing speed in AE. Results support the theory that caudal ACC may monitor reaction time in addition to inhibition and highlight the possibility of delayed ACC neurodevelopment in prenatal alcohol exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.