Atom transfer radical polymerization using activators generated by electron transfer (AGET ATRP) was employed to synthesize well-defined poly (styrene-co-butyl acrylate)/clay nanocomposites. Dodecyltrimethylammonium bromide (DDTMAB) and Vinylbenzyltrimethylammonium chloride (VBTMAC) surfactants were used as clay modifier. The classical surfactant is used to expand the interlayer gallery of montmorillonite; however, double bond of reactive modifier participates in chain propagation process and forms clayattached polymer chains. Subsequently synthesis of attached and free poly (styrene-co-butyl acrylate) chains and their composition was confirmed by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance spectroscopy ( 1 H NMR). Narrow distribution of nanocomposites molecular weight was confirmed by gel permeation chromatography (GPC). Partially exfoliated clay layers in the copolymer matrix were revealed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermal properties of the nanocomposites were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Thermal decomposition of the nanocomposites was hindered in the presence of nanoclay. Dynamic mechanical thermal analysis (DMTA) results show that addition of nanoclay was also resulted in enhanced storage modulus (E′) in comparison with the neat copolymer. Lower glass transition temperature of nanocomposites was displayed by DSC.
Polymer/clay nanocomposite latexes in the form of positively charged nanoparticles were synthesized by a newly developed initiating system, activators generated by electron transfer (AGET), which has been employed in atom transfer radical polymerization (ATRP). These clay‐dispersed latexes were synthesized using AGET ATRP of styrene and butyl acrylate in a miniemulsion system in which, ascorbic acid as a reducing agent was added drop wise to reduce termination reactions. Particle size and particle size distribution of resulted nanocomposite latexes were characterized by dynamic light scattering (DLS). These latexes were in the range of 138 to 171 nm in size. Gel permeation chromatography (GPC) was used to characterize the molecular weight and molecular weight distribution of the resultant copolymer nanocomposites. GPC traces showed that polymers of narrow molecular weight distribution and low Polydispersity Index (PDI) have been synthesized; this clearly shows ATRP reaction is conducted successfully. By increasing nanoclay content, molecular weight of the nanocomposites decreases. The presence of the nanofiller increases the thermal stability of the nanocomposites as investigated by thermogravimetric Analysis (TGA). Glass transition temperature of nanocomposites increases compared with the neat copolymer which was studied by differential scanning calorimetry (DSC). scanning electron microscope (SEM) showed sphere morphology of polymer particles synthesized by miniemulsion polymerization. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that mixed intercalated and exfoliated morphology is obtained. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers
Poly(styrene‐co‐butyl acrylate)/clay nanocomposites were synthesized in miniemulsion via activators generated by electron transfer (AGET) for atom transfer radical polymerization (ATRP). Optimum amounts of catalyst and reducing agent were chosen by considering a linear increase in ln([M0]/[M]) versus time, narrow molecular distribution, and low polydispersity index (PDI). Critical micelle concentration and cross‐sectional surface area per surfactant head group were determined by surface tension analysis. Calculations show that droplet nucleation is the dominant mechanism of nucleation in a miniemulsion system, and there is no micelle in the system. Gel permeation chromatography was used to characterize molecular weight, PDI, and molecular weight distribution. After determination of appropriate conditions, poly(styrene‐co‐butyl acrylate)/clay nanocomposite latexes were synthesized. Low PDI, narrow molecular weights, and first‐order kinetics of the nanocomposites justify that polymerization is well controlled. Kinetics of polymerization decreases by clay loading. The apparent propagation rate constant (kapp) of polymerization in the case of poly(styrene‐co‐butyl acrylate) is 4.079 × 10−6, which becomes 0.558 × 10−6 in the case of poly(styrene‐co‐butyl acrylate)/clay nanocomposite with 2% nanoclay. A decrease in the polymerization rate is related to the hindrance effect of nanoclay layers on monomer diffusion toward the loci of growing macroradicals.
This research aims to perform strategic planning of tourism development in Kandovan village using SOAR model. This model is a combination of SWOT strategy and Appreciative Inquiry (AI) introduced by Jacqueline M. Stavros. AI, instead of focusing on problems such as weaknesses and threats, identifies strengths and creates promising opportunities. Methods: In this study, library and semi-structured interview methods have been used. The present study is a qualitative research in terms of nature and method of data collection. The statistical population of this research includes villagers of Kandovan, government officials, and NGO's related to Kandovan village, in Osku County, near Tabriz metropolis, and tourists visiting the Kandovan village in the summer of 2016. In this research, the qualitative content analysis technique was used in the framework of inductive approach in accordance with the SOAR strategic planning model. Then, four SOAR strategic model indicators, i.e. strengths, opportunities, aspirations and results were extracted. Results: The results of the research indicate that for implementation of UNESCO's architectural standards to world village registration, it is necessary to construct a new Kandovan next to the old village. In addition, holding festivals, exhibitions and weekly markets for the development of regional tourism is recommended. Establishment of tourism amenities such as construction of parking lots, recreational complex, designing websites and construction of a hotel are some other recommendations. Holding training courses related to tourism in the village, is a major step towards development of tourism considering the potential among the youth of the village. Conclusion: Villagers require to learn a series of educational courses. The youth of the village continue to do their business in the village and commute between the village and the city they live during the tourist season. Considering the young generation's loyalty to their hometown and their desire to work in their village, many of them are ready to participate in the development of tourism of village and, as a result, holding educational courses from the Cultural Heritage and Tourism Organization of the region such as foreign language courses, tourism guides, hospitality culture, marketing and advertising are welcomed by young people.
Abstract. In this study the stability of parenteral acyclovir (ACV) when diluted in dextrose (DEX) as large volume intravenous fluid preparation (LVIF) was evaluated and the possible Maillard reaction adducts were monitored in the recommended infusion time. Different physicochemical methods were used to evaluate the Maillard reaction of dextrose with ACV to track the reaction in real infusion condition. Other large volume intravenous fluids were checked regarding the diluted drug stability profile. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and mass data proved the reaction of glucose with dextrose. A Maillard-specific high performance liquid chromatography (HPLC) method was used to track the reaction in real infusion condition in vitro. The nucleophilic reaction occurred in diluted parenteral preparations of acyclovir in 5% dextrose solutions. The best diluent solution was also selected as sodium chloride and introduced based on drug stability and also its adsorption onto different infusion sets (PVC or non PVC) to provide an acceptable administration protocol in clinical practices. Although, the Maillard reaction was proved and successfully tracked in diluted solutions, and the level of drug loss when diluted in dextrose was reported to be between 0.27 up to 1.03% of the initial content. There was no drug adsorption to common infusion sets. The best diluent for parenteral acyclovir is sodium chloride large volume intravenous fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.