Two experiments were conducted to evaluate the effects of using black cumin seeds (BCS), Artemisia leaves (AL), and Camellia L. plant extract (CLE) in the diets of broiler chicks. Experiment 1 was conducted as a completely randomized design in a factorial arrangement (2 × 2) with 8 replicates of 4 chicks in each battery cage. Factors included 2 levels of BCS and AL (0 and 1%). Experiment 2 was conducted as a completely randomized design with 4 treatments (control, 0.3 and 0.5 g/kg of CLE, and 0.5 g/kg of mannanoligosaccharide) of 8 replicates and 4 chicks in each. Body weight and cumulative feed intake were measured at 21, 35, and 42 d of age. Antibody response against SRBC was measured on d 28 and 42. Blood characteristics, relative weight and length of different parts of the carcass, gastrointestinal pH, villi length, and crypt depth were measured at 42 d of age. Artemisia addition did not affect BW and feed conversion ratio (FCR) but decreased feed intake significantly up to 21 d of age (P ≤ 0.01). Black cumin significantly increased BW (P ≤ 0.05) at 21 and 42 d of age and decreased FCR throughout the experimental period (P ≤ 0.01). Artemisia significantly increased monocytes but had no effect on gastrointestinal pH, antibody response, and relative weight and length of different parts of the carcass. Black cumin increased red blood cells, hematocrit, hemoglobin, gizzard relative weight, and pH but decreased antibody response and monocytes percentage (P ≤ 0.01). Artemisia did not affect plasma lipid profile but decreased coliform and Escherichia coli populations of ceca significantly (P ≤ 0.01 and P ≤ 0.05, respectively). Addition of 0.5 g/kg of CLE decreased BW, feed intake, and FCR throughout the experiment (P ≤ 0.01). Camellia increased gizzard and proventriculus pH, villi length, and crypt depth (P ≤ 0.01) but decreased primary antibody response, total white blood cell count, and cholesterol concentration (P ≤ 0.05). The results of this experiment showed that using BCS alone or mixed with AL improved broiler health and performance but CLE negatively affected broiler BW and feed intake and is not a good alternative to commercial mannanoligosaccharide.
Schwann cells, in addition to forming myelin sheaths, have pivotal roles in regeneration of injured axons in the peripheral nervous system such as producing a natural permissive conduit between distal and proximal stumps and secreting nerve growth factors. Due to the atrophy and senescence of Schwann cells in long nerve gap, and the need to ensure the presence of nerve growth factors and basal lamina tubes for axon regeneration in a critical time, injection of Schwann cells with the aid of an engineered conduit seems to be an effective approach to induce axon regrowth. Stem cells with high differentiation and proliferation capability can provide an adequate number of Schwann cells in healthy state for regeneration purposes. Guidance of stem cells differentiation into desired lineages, control of implanted Schwann cells fate, maintenance of nerve growth factors expression, and guidance of axon regrowth are possible with the aid of biomaterials with appropriate chemical, physical, and mechanical properties. Biomaterials' surface chemistry and biomolecules interacting with cells' receptors initiate specific intracellular signaling cascades and direct cells fate. In addition, biomaterials' surface topography in association with cells contact area, focal adhesion, and cytoskeletal remodeling by mechanotransduction process influences cells behavior and induces specific differentiation. The main objective of this review is to investigate the chemical, topographical, and mechanical properties of biomaterials which influence the fate of Schwann cells and the nerve regeneration process.
An aqueous solution of Pectinex (containing cellulase, hemicellulase, and pectinase) at 1%, 2.5%, 5%, 7%, and 10% concentrations and 40C was used to extract anthocyanins (Acys) of saffron tepals at 20, 40, 60, 120 and 180 min reaction times and compared with ethanol solvent under similar conditions. The Acys of the Pectinex solution reached 6.7 mg/g of tepal powder (∼40% more than the ethanol method) when the enzyme concentrations and extraction times were, respectively, 5% and 60 min. The Acys of aqueous enzymes had three times slower degradation rates and 50% more attractive chroma color than the ones recovered by ethanol solution after 3 h of extraction time. Additionally, the Acys of the ethanol solution lost its content sharply (>45%) and its chroma changed quickly (due to the browning and polymerization). High performance liquid chromatography (HPLC) analysis showed that Acys extracted with mixed enzymes had about 80% more cyanidin 3-glucosides and 20% less pelargonidin 3,5-glucosides than with the ethanol method. Most probably, the high content of cyanidin 3-glycosides in enzyme-extracted Acys of saffron tepals was the key factor for its high stability.
Two experiments were conducted to evaluate the effects of feeding guanidinoacetic acid (GAA) and L-arginine (ARG) on fertility and sperm penetration (SP) rate of broiler breeder hens. In the first experiment, a total of 200 broiler breeder hens (Ross 308) aged 53 weeks were randomly allotted to four dietary treatments (0, 0.6, 1.2 and 1.8 g GAA/kg diet) with five replicates of 10 birds each. In the second experiment, 320 broiler breeder hens (Ross 308) were used from 53 to 62 weeks of age in a 2 × 4 factorial arrangement (0 or 1.2 g GAA/kg diet along with 0, 3, 6 or 9 g ARG/kg diet). The hens received a diet containing 2800 kcal ME/kg and 14% CP. Sixteen sexually mature Ross 308 breeder roosters (34 weeks old) were used to artificially inseminate the hens. Fertility of the hens was determined in 61 and 62 weeks of age. The sperm penetration holes in the inner perivitelline layer (IPL) overlying the germinal disc were enumerated on days 3 and 7 following each insemination. Adding GAA to the breeder diet increased the number of SPs in the IPL and fertility in both experiments (p < 0.01). The interactive effect of ARG and GAA on the SP and fertility was significant. Supplementary ARG increased the SP rate in the IPL (p < 0.01). In conclusion, dietary supplementation of GAA and ARG might be potentially used to improve the fertility of broiler breeder hens at the later phase of the egg production period.
A sulfur solution with different metabisulfite concentrations (100, 400, 700, 1,000 and 2,000 ppm) was used to extract anthocyanins from saffron tepals. The extraction process was compared with acidified ethanol solution at similar extraction times of 20, 40, 60, 120, and 180 min at 40°C. The recovery of anthocyanins with sulfur solution was higher than ethanol extraction and reached to 700 mg anthocyanins/100 g, when the sulfur concentration and extraction time were 700 ppm and 60 min, respectively. HPLC analysis showed that anthocyanins extracted with sulfur solution followed by partial desulfurization and reducing sulfur content (to less than 250 ppm) had around 100 % more cyanidin 3 glucosides and 100 % less pelargonidin 3,5 glucosides in comparison with ethanol extraction. Additionally, the color of low-sulfured anthocyanins had more saturation (chroma), less lightness, and more stability than the one extracted with ethanol solution. While monomeric and polymeric anthocyanins extracted with sulfur solution had less than 1 % changes after 3 h extraction time, they had more than 12 % changes when they extracted with alcoholic solution at similar conditions. Overall, the sulfur method had a potential to extract stable anthocyanins from waste and discarded saffron tepals in aqueous solvent, and with higher quantity and quality (more attractive color) than conventional ethanol extraction method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.