The study of the genetic variability of the Moroccan landraces of sorghum constitutes a necessary step that can be exploited in the programs of improvement and valorisation of this marginalized species. The aim of this investigation is to evaluate the variability of sorghum populations and to establish their phylogenetic relations using RAPD and ISSR markers. Sampling was taken in 33 fields of northern regions where this species is most cultivated. Individual plants (398) were collected in 13, 11, 5, and 4 fields of Larache, Tangier, Chefchaouen, and Tetouan, respectively. Thirty-eight RAPD primers and four ISSR primers were used. The percentage of polymorphic fragments revealed with ISSR (98%) is higher than the one revealed with RAPD (85%). The level of the variability obtained through the two techniques is very high. Nevertheless, ISSR markers revealed more diversity than RAPD (0.995 ± 0.006 against 0.946 ± 0.031). The classification based on Jaccard's similarity index distinguished the totality of fields. Data analysis revealed a genetic structure that is closely related to the micro-geographical repartition of the different fields.
Argan Tree is well known for its precious oil extracted from its seeds particularly used for the nutritional and cosmetic benefits. Because of the high international demand, the argan tree suffers from overexploitation and its cultivation is rare. Thus, the assessment of the genetic variation of this endemic tree is critically important for designing conservation strategies. In the present study and for the first time, genetic diversity of the global natural distribution of argan tree ( L.) in Morocco was assessed. Four IRAP (inter-retrotransposon amplified polymorphism) primer combinations and seven ISSR (inter-simple sequence repeat) primers amplified 164 and 248 scorable polymorphic bands respectively. Polymorphic information content (PIC = 0.27), resolving power (Rp = 15) and marker index (MI = 10.81) generated by IRAP primer combinations were almost identical to those generated by ISSR primers (PIC = 0.27, Rp = 9.16 and MI = 12). AMOVA analysis showed that 49% of the genetic variation was partitioned within populations which is supported by Nei's genetic differentiation (Gst = 0.5391) and the overall estimate of gene flow (Nm) being 0.4274. The STRUCTURE analysis, PCoA (principal coordinate analysis) and UPGMA (unweighted pair-group method with arithmetic mean) based on the combined data matrices of IRAP and ISSR divided the 240 argan genotypes into two groups. The strong differentiation observed might be due to the geographical distribution of argan tree. Our results provide crucial insight for genetic conservation programs of this genetic resource.
Drought and desertification are the major environmental constraints facing the Sahelian agro-ecosystems for decades. Assessing genetic diversity of native tree species is critical to assist ecosystems restoration efforts. Here we describe genetic diversity and structure of seven Balanites aegyptiaca L. natural populations distributed across the Sahelian-Saharan zone of Mauritania using 16 polymorphic ISSR primers. These generated 505 polymorphic bands. Polymorphism information content (PIC) varied from (0.13–0.29) with an average 0.23, marker index (MI) averaged 7.3 (range 3.3–10.3) and resolving power (RP) ranged from (4.53–14.6) with an average 9.9. The number of observed alleles (Na) ranged from (0.62–1.39), Effective number of alleles (Ne) varied from (1.26–1.37), Shannon’s information index (I) ranged from (0.25–0.36). AMOVA analysis showed that 80% of the genetic variation was fined within populations, which is supported by a low level of genetic differentiation between population (GST = 0.21) and an overall estimate of gene flow among populations (Nm = 1.9). The dendrogram based on Jaccard's similarity coefficient and the structure analysis divided the seven populations into two main clusters in which two populations from the Saharan zone were grouped. Our results provide baseline data for genetic conservation programs of this Sahelian neglected crop and with an important econ-ecological role.
The argan tree (Argania spinosa L. Skeels, Sapotaceae) is a genetic resource endemic in Morocco. Genetic diversity within and among 13 populations (130 genotypes) of argan tree was studied using AFLP markers. Having checked twenty combinations of labeled primers for regular genomes (500-6000 Mb) (EcoRI+3/ MseI+3 selective bases) and for small genome (50-500 Mb) (EcoRI+2/MseI+3 selective bases), we selected four combinations specific for regular genome able to produce a relatively high polymorphism and a low error rate (0.12 %). A total of 477 unambiguous peaks were amplified ranging from 70 to 500 bp. The average polymorphism information content (PICAVG) value ranged from 0.19 to 0.23. Marker index (MI) and resolving power (RP) varied from 21.23 to 28.82 and 27.63 to 44.92, respectively. Analysis of molecular variance (AMOVA) showed that 19 % of the genetic variation was partitioned among populations and 81 % of the genetic variation was within populations. This was confirmed by the coefficient of gene differentiation between populations (Gst=0.22), and gene flow was estimated to 1.709. The STRUCTURE analysis, principal coordinate analysis (PCoA) and Unweighyhed Pair Group Method with Arithmetic Mean (UPGMA) revealed that populations of A. spinosa were clustered into three genetic groups. The present results can be explored in the design of in situ and ex situ conservation and management programs.
Morocco is one of the most important regions of the world in terms of L. number and variation. This species is in decline due to several factors, which can lead to permanent loss of this resource. It would be essential to evaluate the genetic diversity in order to conserve maximum genetic variability of this species. The genetic diversity and differentiation of 16 sites from five regions representing the entire range of Moroccan Cork Oak were assessed. Twenty-three ISSR primers used generated 985 polymorphic fragments with an average of 42.8 bands per primer and showed 100% of polymorphism. The 173 individuals revealed a moderate level of genetic diversity at species level (I = 0.27, He = 0.161). The AMOVA showed that the highest level of diversity occurred within populations (64%), this was also confirmed by the coefficient of differentiation (Gst = 0.47). The estimated gene flow (Nm = 0.56) and the Mantel test revealed a significant correlation between geographic and genetic diversity (r = 0.266; = 0.001). This genetic structure was further shown by the topology of the UPGMA, sPCA and STRUCTURE analysis. In addition, a core collection of 34 genotypes was established representing the essential diversity detected. This research advocates populations and individuals to preserve in order to improve and conserve this resource in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.