In sports, reaction time and anticipatory skill are critical aspects of perceptual abilities. To date, no study has compared reaction time and anticipatory skill of athletes from open and closed skill-dominated sport. Accordingly, the present study investigated whether a difference exists in sensory-cognitive skills between these two different sport domains. Eleven volleyball players and 11 sprinters participated in this experiment. Reaction time and anticipatory skill of both groups were recorded by a custom-made software called SART (speed anticipation and reaction time test). This software consists of six sensory-cognitive tests that evaluate visual choice reaction time, visual complex choice reaction time, auditory choice reaction time, auditory complex choice reaction time, and anticipatory skill of the high speed and low speed of the ball. For each variable, an independent t-test was performed. Results suggested that sprinters were better in both auditory reaction times (P<0.001 for both tests) and volleyball players were better in both anticipatory skill tests (P = 0.007 and P = 0.04 for anticipatory skill of the high speed and low speed of the ball, respectively). However, no significant differences were found in both visual choice reaction time tests (P > 0.05 for both visual reaction time tests). It is concluded that athletes have greater sensory-cognitive skills related to their specific sport domain either open or closed.
Our understanding of in vivo Achilles tendon (AT) conditioning is limited to two-dimensional ultrasound measures of longitudinal deformation of the whole tendon. This study investigated the regional three-dimensional (3D) deformation of the AT during conditioning. Eighteen ATs were scanned using 3D freehand ultrasound during 10 successive 25 s submaximal (50%) voluntary isometric plantarflexion contractions. Longitudinal strain was assessed for the whole AT, aponeurosis, and free AT and transverse strain was assessed for the proximal-, mid-, and distal-portions of the free AT. Longitudinal conditioning of the whole AT was primarily driven by creep response of the free AT and transverse conditioning was greatest for the mid-portion of the free AT. Whole and free AT longitudinal strain increased up to the third contraction and were accompanied by a corresponding reduction in free AT cross-sectional area (CSA) strain in proximal-, mid-, and distal-portions. No significant changes in aponeurosis strain or tendon volume were detected between contractions. These findings suggest that conditioning alters free AT shape, with increased tendon length attained at the expense of reduction in free AT CSA. Although AT experiences different amounts of strain in different regions, the number of contractions required to reach steady-state strain during conditioning is uniform throughout the tendon.
Mid-portion Achilles tendinopathy (MAT) alters the normal three-dimensional (3D) morphology of the Achilles tendon (AT) at rest and under a single tensile load. However, how MAT changes the 3D morphology of the AT during repeated loading remains unclear. This study compared the AT longitudinal, transverse and volume strains during repeated loading of the tendinopathic AT with those of the contralateral tendon in people with unilateral MAT. Ten adults with unilateral MAT performed 10 successive 25 s submaximal (50%) voluntary isometric plantarflexion contractions with both legs. Freehand 3D ultrasound scans were recorded and used to measure whole AT, free AT and proximal AT longitudinal strains and free AT cross-sectional area (CSA) and volume strains. The free AT experienced higher longitudinal and CSA strain and reached steady state following a greater number of contractions (five contractions) in the tendinopathic AT compared with the contralateral tendon (three contractions). Further, free tendon CSA and volume strain were greater in the tendinopathic AT than in the contralateral tendon from the first contraction, whereas free AT longitudinal strain was not greater than that of the contralateral tendon until the fourth contraction. Volume loss from the tendon core therefore preceded the greater longitudinal strain in the tendinopathic AT. Overall, these findings suggest that the tendinopathic free AT experiences an exaggerated longitudinal and transverse strain response under repeated loading that is underpinned by an altered interaction between solid and fluid tendon matrix components. These alterations are indicative of accentuated poroelasticity and an altered local stress-strain environment within the tendinopathic free tendon matrix, which could affect tendon remodelling via mechanobiological pathways.
Achilles tendon material properties and geometry are altered in Achilles tendinopathy. The purpose of this study was to determine the relative contributions of altered material properties and geometry to free Achilles tendon stress distribution during a sub-maximal contraction in tendinopathic relative to healthy tendons. Tendinopathic (n=8) and healthy tendons (n=8) were imaged at rest and during a sub-maximal voluntary isometric contraction using threedimensional freehand ultrasound. Images were manually segmented and used to create subject-specific finite element models. The resting cross-sectional area of the free tendon was on average 31% greater for the tendinopathic compared to healthy tendons. Material properties for each tendon were determined using a numerical parameter optimisation approach that minimised the difference in experimentally measured longitudinal strain and the strain predicted by the finite element model under submaximal loading conditions for each tendon. The mean Young's modulus for tendinopathic tendons was 53% lower than the corresponding control value. Finite element analyses revealed that tendinopathic tendons experience 24% less stress under the same submaximal external loading conditions compared to healthy tendons. The lower tendon stress in tendinopathy was due to a greater influence of tendon cross-sectional area, which alone reduced tendon stress by 30%, compared to a lower Young's modulus, which alone increased tendon stress by 8%. These findings suggest that the greater tendon cross-sectional area observed in tendinopathy compensates for the substantially lower Young's modulus, thereby protecting pathological tendon against excessive stress.Achilles tendinopathy is a common tendon injury which is prevalent in, but not exclusive to, athletic populations (Kongsgaard et al., 2005;Rolf and Movin, 1997). Up to 25% of affected patients will eventually require operative treatment and 20% of those undergo further surgery (Alfredson, 2003). Achilles tendinopathy is most commonly located in the mid-portion of the free tendon, 2-6 cm from the calcaneal insertion (Astrom and Rausing, 1995;Maffulli et al., 2004;Rolf and Movin, 1997) and is characterised by collagen bundle disruption, hyper-cellularity, hyper-vascularity and altered collagen, glycosaminoglycan and fluid content (Khan et al., 1999). Tendinopathy has also been reported to cause a reduction in tendon mechanical and material properties (Arya and Kulig, 2010;Helland et al., 2013). For the Achilles tendon, stiffness was reduced by 20% and Young's modulus by 50% relative to healthy tendons (Arya and Kulig, 2010). For a tendon of a given length, a lower stiffness would result in greater tendon strain under the same external load. A further adaptation in Achilles tendinopathy is tendon thickening, which increases the tendon cross-sectional area (CSA) by 20-66% (Arya and Kulig, 2010;Helland et al., 2013;Leung and Griffith, 2008;Nuri et al., 2017bNuri et al., , 2018Obst et al., 2018). Tendon thickening may therefore be an adaptation...
Mid-portion Achilles tendinopathy (MAT) adversely affects free Achilles tendon (AT) structure and composition. However, it is not known how these pathological alterations associated with MAT change the normal three-dimensional (3-D) morphology of free AT at rest and under load throughout the entire free tendon length. Here, we used 3-D ultrasound to examine the effect of unilateral MAT on free tendon 3-D morphology [length, cross-sectional area (CSA), anteroposterior (AP) diameter and mediolateral (ML) diameter] and volume at rest and during a submaximal (50%) voluntary isometric plantarflexion contraction bilaterally in individuals with unilateral MAT (n = 10) compared with a matched healthy control group (n = 10). The tendinopathic free AT had a greater CSA relative to the control tendons along the entire tendon length, which was mainly driven by a greater tendon AP diameter. Under load, the tendinopathic tendon experienced greater longitudinal and transverse strains than the control tendons. In contrast to the control tendons, which experienced a reduction in tendon CSA and ML diameter, bulged along the AP axis and behaved isovolumetrically under load, the tendinopathic tendon experienced a reduction in tendon CSA, AP diameter and ML diameter and an overall volume reduction. Overall, these findings suggest that the magnitude of longitudinal strain and volume change and the corresponding magnitude and direction of transverse strain under load are altered in MAT compared with normal tendon. These findings are indicative of a fundamental reorganization of the tendon matrix and alterations in tendon fluid content and distribution under load in tendinopathic tendon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.