Atmospheric correction of optical satellite imagery is an essential pre-processing for modelling biophysical variables, multi-temporal analysis, and digital classification processes.Sentinel-2 products available for users are distributed by the European Space Agency (ESA) as Top Of Atmosphere reflectance values in cartographic geometry (Level-1C product). In order to obtain Bottom Of Atmosphere reflectance images (Level-2A product) derived from this Level-1C products, ESA provides the SEN2COR module, which is implemented in the Sentinel Application Platform. Alternatively, ESA recently distributes Level-2A products processed by SEN2COR with a default configuration. On the other hand, the conversion from Level-1C to Level-2A product can be generated using alternative atmospheric correction methods, such as MAJA, 6S, or iCOR. In this context, this paper aims to evaluate the quality of Level-2A products obtained through different methods in Mediterranean shrub and grasslands by comparing data obtained from Sentinel-2 imagery with field spectrometry data. For that purpose, six plots with different land covers (asphalt, grass, shrub, pasture, and bare soil) were analyzed, by using
Continuous canopy status monitoring is an essential factor to support and precisely apply orchard management actions such as pruning, pesticide and foliar treatment applications, or fertirrigation, among others. For that, this work proposes the use of multispectral vegetation indices to estimate geometric and structural orchard parameters from remote sensing images (high temporal and spatial resolution) as an alternative to more time-consuming processing techniques, such as LiDAR surveys or UAV photogrammetry. A super-intensive almond (Prunus dulcis) orchard was scanned using a mobile terrestrial laser (LiDAR) in two different vegetative stages (after spring pruning and before harvesting). From the LiDAR point cloud, canopy orchard parameters, including maximum height and width, cross-sectional area and porosity, were summarized every 0.5 m along the rows and interpolated using block kriging to the pixel centroids of PlanetScope (3 × 3 m) and Sentinel-2 (10 × 10 m) image grids. To study the association between the LiDAR-derived parameters and 4 different vegetation indices. A canonical correlation analysis was carried out, showing the normalized difference vegetation index (NDVI) and the green normalized difference vegetation index (GNDVI) to have the best correlations. A cluster analysis was also performed. Results can be considered optimistic both for PlanetScope and Sentinel-2 images to delimit within-field management zones, being supported by significant differences in LiDAR-derived canopy parameters.
One of the challenges in orchard management, in particular of hedgerow tree plantations, is the delineation of management zones on the bases of high-precision data. Along this line, the present study analyses the applicability of vegetation indices derived from UAV images to estimate the key structural and geometric canopy parameters of an almond orchard. In addition, the classes created on the basis of the vegetation indices were assessed to delineate potential management zones. The structural and geometric orchard parameters (width, height, cross-sectional area and porosity) were characterized by means of a LiDAR sensor, and the vegetation indices were derived from a UAV-acquired multispectral image. Both datasets summarized every 0.5 m along the almond tree rows and were used to interpolate continuous representations of the variables by means of geostatistical analysis. Linear and canonical correlation analyses were carried out to select the best performing vegetation index to estimate the structural and geometric orchard parameters in each cross-section of the tree rows. The results showed that NDVI averaged in each cross-section and normalized by its projected area achieved the highest correlations and served to define potential management zones. These findings expand the possibilities of using multispectral images in orchard management, particularly in hedgerow plantations.
<p>We have finished the complete digitalization of Annual Books from the Spanish meteorological service (AEMET) between 1916 to 1949. Data retrieved included monthly means of maximum and minimum temperature. In the present contribution we are going to show the new MOTEDAS_Century dataset (MOnthly TEmperature Dataset of Spain century) which has been performed matching data from the annual books and data from the national climate data bank of AEMET. The amount of stations with temperature data vary from a minimum of 228 (1938) and 2.030 (1994). This length of the time series is sometimes very short. Since we aim to analyse the information with a highest spatial density as possible we decided, instead of reconstructing series, to reconstruct monthly fields independently by using all the information available month to month between 1916 and 2015. Monthly interpolated data were converted to a high-resolution grid (10x10 km) using the Angular Distance Weighting method, resulting into a 5000 pixels grid.</p> <p>&#160;</p> <p>The time series of annual mean temperature in Spanish mainland from 1916 to 2015 shows the well-known pattern of increase during the first decades, a slowdown in the middle of the 20<sup>th</sup> century, and the final rise since the 1970&#180;s, including a final stage without significant trend for the last three decades.</p> <p>&#160;</p> <p>MOTEDAS_Century&#180;s annual temperature average series has been compared with other analogous series from BEST (Berkelay Earth Surface Temperature) and SDAT (Spanish Daily Adjusted Temperature Series) datasets, as well as the twentieth century reanalysis for the Iberian Peninsula. The different versions resemble the global pattern, although differences exist particularly during the last three decades. The comparison of the annual mean temperature series with their counterparts in the BEST, AEMET and SDAT databases suggests that processing the newly retrieved information does not modify the behaviour patterns of mean annual temperatures in the Spanish mainland, and that the difference observed among the various sources can be attributed to a combination of effects from the different number of weather stations examined, which is very much higher in MOTEDAS_century, to the local characteristics of stations. The MOTEDAS_century grid in the anomalies format is available on request from the authors and will be in future on the website of the CLICES Project (http://clices.unizar.es).</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.