Out-of-distribution (OOD) detection is indispensable for safely deploying machine learning models in the wild. One of the key challenges is that models lack supervision signals from unknown data, and as a result, can produce overconfident predictions on OOD data. Recent work on outlier synthesis modeled the feature space as parametric Gaussian distribution, a strong and restrictive assumption that might not hold in reality. In this paper, we propose a novel framework, non-parametric outlier synthesis (NPOS), which generates artificial OOD training data and facilitates learning a reliable decision boundary between ID and OOD data. Importantly, our proposed synthesis approach does not make any distributional assumption on the ID embeddings, thereby offering strong flexibility and generality. We show that our synthesis approach can be mathematically interpreted as a rejection sampling framework. Extensive experiments show that NPOS can achieve superior OOD detection performance, outperforming the competitive rivals by a significant margin. Code is publicly available at https://github.com/deeplearning-wisc/npos.
Video deblurring remains a challenging task due to various causes of blurring. Traditional methods have considered how to utilize neighboring frames by the single-scale alignment for restoration. However, they typically suffer from misalignment caused by severe blur. In this work, we aim to better utilize neighboring frames with high efficient feature alignment. We propose a Pyramid Feature Alignment Network (PFAN) for video deblurring. First, the multiscale feature of blurry frames is extracted with the strategy of Structure-to-Detail Downsampling (SDD) before alignment. This downsampling strategy makes the edges sharper, which is helpful for alignment. Then we align the feature at each scale and reconstruct the image at the corresponding scale. This strategy effectively supervises the alignment at each scale, overcoming the problem of propagated errors from the above scales at the alignment stage. To better handle the challenges of complex and large motions, instead of aligning features at each scale separately, lower-scale motion information is used to guide the higher-scale motion estimation. Accordingly, a Cascade Guided Deformable Alignment (CGDA) is proposed to integrate coarse motion into deformable convolution for finer and more accurate alignment. As demonstrated in extensive experiments, our proposed PFAN achieves superior performance with competitive speed compared to the state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.