Abstract. Urban air pollution is associated with significant adverse health effects. Model-based abatement strategies are required and developed for the growing urban populations. In the initial development stage, these are focussed on exceedances of air quality standards caused by high short-term pollutant concentrations. Prediction of health effects and implementation of urban air quality information and abatement systems require accurate forecasting of air pollution episodes and population exposure, including modelling of emissions, meteorology, atmospheric dispersion and chemical reaction of pollutants, population mobility, and indoor-outdoor relationship of the pollutants. In the past, these different areas have been treated separately by different models and even institutions. Progress in computer resources and ensuing improvements in numerical weather prediction, air chemistry, and exposure modelling recently allow a unification and integration of the disjunctive models and approaches. The current work presents a novel approach that integrates the latest developments in meteorological, air quality, and population exposure modelling into Urban Air Quality Information and Forecasting Systems (UAQIFS) in the context of the European Union FUMAPEX project. The suggested integrated strategy is demonstrated for examples of the systems in three Nordic cities: Helsinki and Oslo for assessment and forecasting of urban air pollution and Copenhagen for urban emergency preparedness.
Levels of the monosaccharide anhydride (MA) levoglucosan and its isomeric compounds galactosan and mannosan were quantified in the PM10 fraction (particulate matter < or = 10 microm in aerodynamic diameter) of ambient aerosols from an urban (Oslo) and a suburban (Elverum) site in Norway, both influenced by small-scale wood burning. MAs are degradation products of cellulose and hemicellulose, and levoglucosan is especially emitted in high concentrations during pyrolysis and combustion of wood, making it a potential tracer of primary particles emitted from biomass burning. MAs were quantified using a novel high-performance liquid chromatography/ high-resolution mass spectrometry-time of flight method. This approach distinguishes between the isomeric compounds of MAs and benefits from the limited sample preparation required before analysis, and no extensive derivatization step is needed. The highest concentrations of levogucosan, galactosan, and mannosan (sigmaMA) were recorded in winter because of wood burning for residential heating (sigmaMA(MAX) = 1,240 ng m(-3)). This finding was substantiated by a relatively high correlation (R2 = 0.64) between the levoglucosan concentration and decreasing ambient temperature. At the suburban site, sigmaMA accounted for 3.1% of PM10, whereas the corresponding level at the urban site was 0.6%. The mass size distribution of MAs associated with atmospheric aerosols was measured using a Berner cascade impactor. The size distribution was characterized with a single mode at 561 nm. Ninety-five percent of the mass concentration of the MAs was found to be associated with particles < 2 micro.m. A preliminary attempt to estimate the contribution of wood burning to the mass concentration of PM10 in Oslo using levoglucosan as a tracer indicates that 24% comes from wood burning. This is approximately a factor of 2 lower than estimated by the AirQUIS dispersion model.
The air pollution dispersion model EPISODE has been developed at the Norwegian Institute for Air Research (NILU) over the past several years in order to meet the needs of modern air quality management work in urban areas. The model has recently been used as a basis for exposure calculations of NOx and NO2 in order to assess the effects of different traffic diversion measures on health and well being for the residents in the Vålerenga-Ekeberg-Gamlebyen area in Oslo. Here we describe some results from the most recent evaluations of the model for NOx and NO2 at station Nordahl Brunsgate in Oslo for the period 1 October 1996-19 November 1996. In addition examples of population exposure calculations for Oslo performed during the winter period of 1995-96, are also presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.