Domesticated species have an attenuated behavioral and physiological stress response compared to their wild counterparts, but the genetic mechanisms underlying this change are not fully understood. We investigated gene expression of a panel of stress response-related genes in five tissues known for their involvement in the stress response: hippocampus, hypothalamus, pituitary, adrenal glands and liver of domesticated White Leghorn chickens and compared it with the wild ancestor of all domesticated breeds, the Red Junglefowl. Gene expression was measured both at baseline and after 45 min of restraint stress. Most of the changes in gene expression related to stress were similar to mammals, with an upregulation of genes such as FKBP5, C-FOS and EGR1 in hippocampus and hypothalamus and StAR, MC2R and TH in adrenal glands. We also found a decrease in the expression of CRHR1 in the pituitary of chickens after stress, which could be involved in negative feedback regulation of the stress response. Furthermore, we observed a downregulation of EGR1 and C-FOS in the pituitary following stress, which could be a potential link between stress and its effects on reproduction and growth in chickens.We also found changes in the expression of important genes between breeds such as GR in the hypothalamus, POMC and PC1 in the pituitary and CYP11A1 and HSD3B2 in the adrenal glands. These results suggest that the domesticated White Leghorn may have a higher capacity for negative feedback of the HPA axis, a lower capacity for synthesis of ACTH in the pituitary and a reduced synthesis rate of corticosterone in the adrenal glands compared to Red Junglefowl. All of these findings could explain the attenuated stress response in the domesticated birds.
BackgroundDomestication of animals leads to large phenotypic alterations within a short evolutionary time-period. Such alterations are caused by genomic variations, yet the prevalence of modified traits is higher than expected if they were caused only by classical genetics and mutations. Epigenetic mechanisms may also be important in driving domesticated phenotypes such as behavior traits. Gene expression can be modulated epigenetically by mechanisms such as DNA methylation, resulting in modifications that are not only variable and susceptible to environmental stimuli, but also sometimes transgenerationally stable. To study such mechanisms in early domestication, we used as model two selected lines of red junglefowl (ancestors of modern chickens) that were bred for either high or low fear of humans over five generations, and investigated differences in hypothalamic DNA methylation between the two populations.ResultsTwenty-two 1-kb windows were differentially methylated between the two selected lines at p < 0.05 after false discovery rate correction. The annotated functions of the genes within these windows indicated epigenetic regulation of metabolic and signaling pathways, which agrees with the changes in gene expression that were previously reported for the same tissue and animals.ConclusionsOur results show that selection for an important domestication-related behavioral trait such as tameness can cause divergent epigenetic patterns within only five generations, and that these changes could have an important role in chicken domestication.Electronic supplementary materialThe online version of this article (10.1186/s12711-018-0384-z) contains supplementary material, which is available to authorized users.
The stress response has been largely modified in all domesticated animals, offering a strong tool for genetic mapping. In chickens, ancestral Red Junglefowl react stronger both in terms of physiology and behavior to a brief restraint stress than domesticated White Leghorn, demonstrating modified functions of the hypothalamic–pituitary–adrenal (HPA) axis. We mapped quantitative trait loci (QTL) underlying variations in stress-induced hormone levels using 232 birds from the 12th generation of an advanced intercross between White Leghorn and Red Junglefowl, genotyped for 739 genetic markers. Plasma levels of corticosterone, dehydroepiandrosterone (DHEA), and pregnenolone (PREG) were measured using LC-MS/MS in all genotyped birds. Transcription levels of the candidate genes were measured in the adrenal glands or hypothalamus of 88 out of the 232 birds used for hormone assessment. Genes were targeted for expression analysis when they were located in a hormone QTL region and were differentially expressed in the pure breed birds. One genome-wide significant QTL on chromosome 5 and two suggestive QTL together explained 20% of the variance in corticosterone response. Two significant QTL for aldosterone on chromosome 2 and 5 (explaining 19% of the variance), and one QTL for DHEA on chromosome 4 (explaining 5% of the variance), were detected. Orthologous DNA regions to the significant corticosterone QTL have been previously associated with the physiological stress response in other species but, to our knowledge, the underlying gene(s) have not been identified. SERPINA10 had an expression QTL (eQTL) colocalized with the corticosterone QTL on chromosome 5 and PDE1C had an eQTL colocalized with the aldosterone QTL on chromosome 2. Furthermore, in both cases, the expression levels of the genes were correlated with the plasma levels of the hormones. Hence, both these genes are strong putative candidates for the domestication-induced modifications of the stress response in chickens. Improved understanding of the genes associated with HPA-axis reactivity can provide insights into the pathways and mechanisms causing stress-related pathologies.
Domestication of animals is associated with numerous alterations in physiology, morphology, and behavior. Lower reactivity of the hypothalamic-pituitary-adrenal (HPA) axis and reduced fearfulness is seen in most studied domesticates, including chickens. Previously we have shown that the physiological stress response as well as expression levels of hundreds of genes in the hypothalamus and adrenal glands are different between domesticated White Leghorn and the progenitor of modern chickens, the Red Junglefowl. To map genetic loci associated with the transcription levels of genes involved in the physiological stress response, we conducted an eQTL analysis in the F generation of an inter-cross between White Leghorn and Red Junglefowl. We selected genes for further studies based on their known function in the regulation of the HPA axis or sympathoadrenal (SA) system, and measured their expression levels in the hypothalamus and the adrenal glands after a brief stress exposure (physical restraint). The expression values were treated as quantitative traits for the eQTL mapping. The plasma levels of corticosterone were also assessed. We analyzed the correlation between gene expression and corticosterone levels and mapped eQTL and their potential effects on corticosterone levels. The effects on gene transcription of a previously found QTL for corticosterone response were also investigated. The expression levels of the glucocorticoid receptor (GR) in the hypothalamus and several genes in the adrenal glands were correlated with the post-stress levels of corticosterone in plasma. We found several cis- and trans-acting eQTL for stress-related genes in both hypothalamus and adrenal. In the hypothalamus, one eQTL for c-FOS and one QTL for expression of GR were found. In the adrenal tissue, we identified eQTL for the genes NR0B1, RGS4, DBH, MAOA, GRIN1, GABRB2, GABRB3, and HSF1. None of the found eQTL were significant predictors of corticosterone levels. The previously found QTL for corticosterone was associated with GR expression in hypothalamus. Our data suggests that domestication related modification in the stress response is driven by changes in the transcription levels of several modulators of the HPA and SA systems in hypothalamus and adrenal glands and not by changes in the expression of the steroidogenic genes. The presence of eQTL for GR in hypothalamus combined with the negative correlation between GR expression and corticosterone response suggests GR as a candidate for further functional studies regarding modification of stress response during chicken domestication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.