Purpose of Review
The incidence of diabetes is increasing worldwide. Diabetes mellitus is characterized by hyperglycemia, which in the long-term damages the function of many organs including the eyes, the vasculature, the nervous system, and the kidneys, thereby imposing an important cause of morbidity for affected individuals. More recently, increased bone fragility was also noted in patients with diabetes. While patients with type 1 diabetes mellitus (T1DM) have low bone mass and a 6-fold risk for hip fractures, patients with type 2 diabetes mellitus (T2DM) have an increased bone mass, yet still display a 2-fold elevated risk for hip fractures. Although the underlying mechanisms are just beginning to be unraveled, it is clear that diagnostic tools are lacking to identify patients at risk for fracture, especially in the case of T2DM, in which classical tools to diagnose osteoporosis such as dual X-ray absorptiometry have limitations. Thus, new biomarkers are urgently needed to help identify patients with diabetes who are at risk to fracture.
Recent Findings
Previously, microRNAs have received great attention not only for being involved in the pathogenesis of various chronic diseases, including osteoporosis, but also for their value as biomarkers.
Summary
Here, we summarize the current knowledge on microRNAs and their role in diabetic bone disease and highlight recent studies on miRNAs as biomarkers to predict bone fragility in T1DM and T2DM. Finally, we discuss future directions and challenges for their use as prognostic markers.
Bone fragility is an adverse outcome of type 2 diabetes mellitus (T2DM). The underlying molecular mechanisms have, however, remained largely unknown. MicroRNAs (miRNAs) are short non-coding RNAs that control gene expression in health and disease states. The aim of this study was to investigate the genome-wide regulation of miRNAs in T2DM bone disease by analyzing serum and bone tissue samples from a well-established rat model of T2DM, the Zucker Diabetic Fatty (ZDF) model. We performed small RNA-sequencing analysis to detect dysregulated miRNAs in the serum and ulna bone of the ZDF model under placebo and also under anti-sclerostin, PTH, and insulin treatments. The dysregulated circulating miRNAs were investigated for their cell-type enrichment to identify putative donor cells and were used to construct gene target networks. Our results show that unique sets of miRNAs are dysregulated in the serum (n = 12, FDR < 0.2) and bone tissue (n = 34, FDR < 0.2) of ZDF rats. Insulin treatment was found to induce a strong dysregulation of circulating miRNAs which are mainly involved in metabolism, thereby restoring seven circulating miRNAs in the ZDF model to normal levels. The effects of anti-sclerostin treatment on serum miRNA levels were weaker, but affected miRNAs were shown to be enriched in bone tissue. PTH treatment did not produce any effect on circulating or bone miRNAs in the ZDF rats. Altogether, this study provides the first comprehensive insights into the dysregulation of bone and serum miRNAs in the context of T2DM and the effect of insulin, PTH, and anti-sclerostin treatments on circulating miRNAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.