Scaffolds are important to tissue regeneration and engineering because they can sustain the continuous release of various cell types and provide a location where new bone-forming cells can attach and propagate. Scaffolds produced from diverse processes have been studied and analyzed in recent decades. They are structurally efficient for improving cell affinity and synthetic and mechanical strength. Carbon nanotubes are spongy nanoparticles with high strength and thermal inertness, and they have been used as filler particles in the manufacturing industry to increase the performance of scaffold particles. The regeneration of tissue and organs requires a significant level of spatial and temporal control over physiological processes, as well as experiments in actual environments. This has led to an upsurge in the use of nanoparticle-based tissue scaffolds with numerous cell types for contrast imaging and managing scaffold characteristics. In this review, we emphasize the usage of carbon nanotubes (CNTs) and CNT–polymer composites in tissue engineering and regenerative medicine and also summarize challenges and prospects for their potential applications in different areas.
Water pollution is a global issue because of potentially lethal toxins. Polymeric nanomaterials are making their way into water treatment processes and are being utilized to efficiently remove a variety of pollutants. Polymeric nanomaterials are a popular option for a solution because they have a high adsorption capacity and a high surface charge. Nanocomposites have recently come to the attention of those working in the field of water treatment in order to more effectively remove contaminants. Polymeric composites are based on biopolymers and are being developed. These all quickly reached the industrial standards because of their low impact on the natural world. Chitosan is one of the biopolymers that are used extensively. Moreover, it is one of the most highly preferred biopolymers. It is simple to scale up and is readily available. The incorporation of nanomaterials into the biopolymer enables better control over the shape, size, and morphology of the particle, as well as an increase in the efficiency with which contaminants are removed. This is an excellent review that examines recent developments in the formation of chitosan-based polymeric nanocomposites and their performance in removing various contaminants including heavy metals, dyes, pesticides, pharmaceutical waste, and radionuclides from water.
The electrical properties of quantum dot sensitized solar cells (QDSSC) under illumination and dark conditions are investigated and the measurements obtained on the cells are compared with theoretical calculations. Curve fitting are solved with the help of non-linear curve least squares
solver in MATLAB. The parameter matrix P was then fitted using the solver to minimize the mean square of deviation between the experimental and fitted data. Thus obtained parameters are used for modeling the solar cell in SIMULINK environment. This model is a phenomenological model to fit
I–V characteristics of real cells.
The solar energy is one of the potential renewable green energy source considering the availability of sunlight in abundance and the need for clean and renewable source of energy. Quantum dots are semiconductor nanocrystals having considerable interest in photovoltaic research areas.
Cadmium sulfide-sensitized solar cells are synthesized by Chemical bath deposition and titanium nanowires were fabricated by hydrothermal method. The synthesized CdS quantum dots are sensitized to nanoporous TiO2 films to form quantum dots-sensitized solar cell applications. The
introduction of TNWs enables the electrolyte to penetrate easily inside the film which increases the interfacial contact between the nanowires, the quantum dots and the electrolyte results in improvement in efficiency of solar cell. The goal of our research is to understand the fundamental
physics and performance of quantum dot-sensitized solar cells with improved photoconversion efficiency at the low cost based on selection of TiO2 nanostructures, sensitizers and electrodes through an integrated experimental and modeling study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.