Polymer composite has contributed tremendously for energy efficient technologies in automotive and aero industries. Environmental and health concerns related to the carcinogenic nature of artificial fiber in polymer composite needs a retrofit. Eco friendly natural cellulosic fiber extract from the stem of Cissus quadrangularis plant is extensively characterized to consider as a viable alternative for man-made hazardous fibers. Anatomical study, chemical analysis, physical analysis, FTIR, XRD, SEM analysis and thermo gravimetric analysis were done to establish the certainty of using them as reinforcement fiber. Its light weight and the presence of high cellulose content (82.73%) with very little wax (0.18%) provide high specific strength and good bonding properties in composite manufacturing. The flaky honeycomb outer surface revealed through electron microscopy contributes for high modulus in CQ stem fiber and thermo gravimetric analysis ensures thermal stability up to 270 °C, which is within the polymerization process temperature.
A novel epoxy-based composites were fabricated by reinforcing pineapple/flax (PF) fibers and peanut oil cake (PCF) filler using the hand layup cum compression moulding technique and investigated its mechanical, water absorption and wear properties as a function of wt.% of PF fibers (20–40 wt.%) and PCF (1–3 wt.%). The XRD and FTIR results proved the presence of lignocellulosic nature in PCF. Mechanical test results showed significant enhancement in the properties after the addition of PCF. The maximum tensile, flexural and impact properties of 37. 89 MPa, 70.28 MPa and 96.99 J/m were observed in the composites having 20 wt.% of PF and 2 wt.% of PCF. Taguchi based optimization observed a lower specific wear rate (SWR) with 2 wt.% PCF/20 wt.% PF/5 N load and 1500 m sliding distance (SD) combination. The ANOVA results proved the significance of PCF, PF fiber, sliding distance, and load for SWR in this experimentation. The Taguchi optimized results observed a lower coefficient of friction (COF) in 2 wt.% PCF/20 wt.% PF/5N load/500 m SD combination. SEM results displayed surface deformations in the wear-tested composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.