The utilization of sustainable natural fibers as green filler/reinforcement material for producing polymeric composites is substantially improved due to increase in the perception of ecological safety and usage of biodegradable and renewable materials toward a green environment. These natural fibers are obtained from various sources and are reinforced in the polymer matrices to produce polymer matrix composites. However, the overall properties of these composites are low when compared to that of the synthetic fiber-based composites due to poor interfacial bonding between the hydrophilic natural fiber and hydrophobic polymers. This deficiency can be addressed by incorporating
This study deals with the investigation of the mechanical and water absorption properties of jute fibre reinforced epoxy composites prepared by using hand layup method. The effects of fibre length (10, 20, 30 and 40 mm), fibre weight fraction (0%, 5%, 10%, 15%, 20% and 25%), concentration of NaOH treatment (5% and 10%) and nano-clay addition (1, 3, 5 and 7 wt%) on the aforementioned properties were determined. Morphological characterisation was performed for the tensile and flexural fractured surface of the specimens to study their microstructural failures. The results revealed that the composites reinforced with 5% of NaOH-treated fibre and 5 wt% of nano-clay exhibited higher tensile, flexural and impact strengths of 103.05 MPa, 162.8 MPa and 0.358 kJ/mm2 respectively, and lower water absorption rate. Moreover, the optimum fibre length and fibre weight fraction were found to be 30 mm and 20% respectively for better overall properties. These composites can be used for light and medium load applications.
A novel epoxy-based composites were fabricated by reinforcing pineapple/flax (PF) fibers and peanut oil cake (PCF) filler using the hand layup cum compression moulding technique and investigated its mechanical, water absorption and wear properties as a function of wt.% of PF fibers (20–40 wt.%) and PCF (1–3 wt.%). The XRD and FTIR results proved the presence of lignocellulosic nature in PCF. Mechanical test results showed significant enhancement in the properties after the addition of PCF. The maximum tensile, flexural and impact properties of 37. 89 MPa, 70.28 MPa and 96.99 J/m were observed in the composites having 20 wt.% of PF and 2 wt.% of PCF. Taguchi based optimization observed a lower specific wear rate (SWR) with 2 wt.% PCF/20 wt.% PF/5 N load and 1500 m sliding distance (SD) combination. The ANOVA results proved the significance of PCF, PF fiber, sliding distance, and load for SWR in this experimentation. The Taguchi optimized results observed a lower coefficient of friction (COF) in 2 wt.% PCF/20 wt.% PF/5N load/500 m SD combination. SEM results displayed surface deformations in the wear-tested composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.