Cutaneous thresholds for thermal pain were measured in 10 human subjects during 3-s exposures at 94 GHz continuous wave microwave energy at intensities up to approximately 1.8 W cm(-2). During each exposure, the temperature increase at the skin's surface was measured by infrared thermography. The mean (+/- s.e.m.) baseline temperature of the skin was 34.0+/-0.2 degrees C. The threshold for pricking pain was 43.9+/-0.7 degrees C, which corresponded to an increase in surface temperature of approximately 9.9 degrees C (from 34.0 degrees C to 43.9 degrees C). The measured increases in surface temperature were in good agreement with a simple thermal model that accounted for heat conduction and for the penetration depth of the microwave energy into tissue. Taken together, these results support the use of the model for predicting thresholds of thermal pain at other millimeter wave (length) frequencies.
A previous study reported thermal effects resulting from millimeter wave exposures at 35 and 94 GHz on non-human primates, specifically rhesus monkeys’ (Macaca mulatta) corneas, but the data exhibited large variations in the observed temperatures and uncertainties in the millimeter wave dosimetry. By incorporating improvements in models and dosimetry, a non-human primate experiment was conducted involving corneal exposures that agreed well with a three-layer, one-dimensional, thermodynamic model to predict the expected surface temperature rise. The new data indicated that the originally reported safety margins for eye exposures were underestimated by 41 ± 20% over the power densities explored. As a result, the expected minimal visible lesion thresholds should be raised to 10.6 ± 1.5 and 7.1 ± 1.0 J cm−2 at 35 and 94 GHz, respectively, provided that the power density is less than 6 W cm−2 for subjects that are unable to blink. If the blink reflex was active, a power density threshold of 20 W cm−2 could be used to protect the eye, although the eyelid could be burned if the exposure was long enough.
This study reports measurements of the skin surface temperature elevations during localized irradiation (94 GHz) of three species: rat (irradiated on lower abdomen), rhesus monkey (posterior forelimb), and human (posterior forearm). Two exposure conditions were examined: prolonged, low power density microwaves (LPM) and short-term, high power density microwaves (HPM). Temperature histories were compared with calculations from a bio-heat transfer model. The mean peak surface temperature increase was approximately 7.0 degrees C for the short-term HPM exposures for all three species/locations, and 8.5 degrees C (monkey, human) to 10.5 degrees C (rat) for the longer-duration LPM exposures. The HPM temperature histories are in close agreement with a one-dimensional conduction heat transfer model with negligible blood flow. The LPM temperature histories were compared with calculations from the bio-heat model, evaluated for various (constant) blood flow rates. Results suggest a variable blood flow model, reflecting a dynamic thermoregulatory response, may be more suited to describing skin surface temperature response under long-duration MMW irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.