Robot hands play an important role in the interaction between robots and the environment, and the precision and complexity of their tasks in work production are becoming higher and higher. However, because the traditional manipulator has too many driving components, complex control, and a lack of versatility, it is difficult to solve the contradiction between the degrees of freedom, weight, flexibility, and grasping ability. The existing manipulator has difficulty meeting the diversified requirements of a simple structure, a large grasping force, and the ability to automatically adapt to shape when grasping an object. To solve this problem, we designed a kind of underactuated manipulator with a simple structure and strong generality based on the metamorphic mechanism principle. First, the mechanism of the manipulator was designed on the basis of the metamorphic mechanism principle, and a kinematics analysis was carried out. Then, the genetic algorithm was used to optimize the size parameters of the manipulator finger structure. Finally, for different shapes of objects, the design of the control circuit binding force feedback control was carried out with a grasping experiment. The experimental results show that the manipulator has simple control and can grasp objects of different sizes, positions, and shapes.
PurposeThe purpose is to predict the distribution of the residual pretightening force of the bolt group under the action of any initial pretightening force, and to achieve the final residual pretightening force as the target to solve the initial pretightening force value to be applied.Design/methodology/approachBased on the finite element method and the elastic interaction theory between bolt group, this paper establishes a prediction model for the residual pretightening force distribution of bolt group for one-step pretightening and multi-step pretightening of gasketless flange connection systems. In addition, using the general modeling method given in this paper, the prediction model of residual pretightening force of long plate bolt connection system is established, and compared with reference, which fully proves the effectiveness and universality of the general prediction model of residual pretightening force of bolt group.FindingsThe appropriate pretightening sequence, increasing the number of pretightening steps and variable amplitude loading can effectively reduce the influence of elastic interaction and improve the uniformity of residual pretightening force of the bolt group. And the selection of material, number of bolts and connected thickness of bolt connection system also has a great influence on the distribution of residual pretightening force of bolt groups.Originality/valueThe general prediction model for the residual pretightening force of bolt group of connecting structural components considering elastic interaction given in this paper can provide a reference for the design and optimization of the bolt assembly process of the rotor system and the casing system in aero-engine and the prediction of the performance of the connecting system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.