The problem of respiratory sound classification has received good attention from the clinical scientists and medical researcher’s community in the last year to the diagnosis of COVID-19 disease. The Artificial Intelligence (AI) based models deployed into the real-world to identify the COVID-19 disease from human-generated sounds such as voice/speech, dry cough, and breath. The CNN (Convolutional Neural Network) is used to solve many real-world problems with Artificial Intelligence (AI) based machines. We have proposed and implemented a multi-channeled Deep Convolutional Network (DCNN) for automatic diagnosis of COVID-19 disease from human respiratory sounds like a voice, dry cough, and breath, and it will give better accuracy and performance than previous models. We have applied multi-feature channels such as the data De-noising Auto Encoder (DAE) technique, GFCC (Gamma-tone Frequency Cepstral Coefficients), and IMFCC (Improved Multi-frequency Cepstral Coefficients) methods on augmented data to extract the deep features for the input of the CNN. The proposed approach improves system performance to the diagnosis of COVID-19 disease and provides better results on the COVID-19 respiratory sound dataset.
The issue in respiratory sound classification has attained good attention from the clinical scientists and medical researcher's group in the last year to diagnosing COVID-19 disease. To date, various models of Artificial Intelligence (AI) entered into the real-world to detect the COVID-19 disease from human-generated sounds such as voice/speech, cough, and breath. The Convolutional Neural Network (CNN) model is implemented for solving a lot of real-world problems on machines based on Artificial Intelligence (AI). In this context, one dimension (1D) CNN is suggested and implemented to diagnose respiratory diseases of COVID-19 from human respiratory sounds such as a voice, cough, and breath. An augmentation-based mechanism is applied to improve the preprocessing performance of the COVID-19 sounds dataset and to automate COVID-19 disease diagnosis using the 1D convolutional network. Furthermore, a DDAE (Data De-noising Auto Encoder) technique is used to generate deep sound features such as the input function to the 1D CNN instead of adopting the standard input of MFCC (Mel-frequency cepstral coefficient), and it is performed better accuracy and performance than previous models. Results As a result, around 4% accuracy is achieved than traditional MFCC. We have classified COVID-19 sounds, asthma sounds, and regular healthy sounds using a 1D CNN classifier and shown around 90% accuracy to detect the COVID-19 disease from respiratory sounds. Conclusion A Data De-noising Auto Encoder (DDAE) was adopted to extract the acoustic sound signals in-depth features instead of traditional MFCC. The proposed model improves efficiently to classify COVID-19 sounds for detecting COVID-19 positive symptoms.
The World Health Organization (WHO) has announced a COVID-19 was a global pandemic in March 2020. It was initially started in china in the year 2019 December and affected an expanding number of nations in various countries in the last few months. In this particular situation, many techniques, methods, and AI-based classification algorithms are put in the spotlight in reacting to fight against it and reduce the rate of such a global health crisis. COVID-19's main signs are heavy temperature, different cough, cold, breathing shortness, and a combination of loss of sense of smell and chest tightness. The digital world is growing day by day; in this context digital stethoscope can read all of these symptoms and diagnose respiratory disease. In this study, we majorly focus on literature reviews of how SARS-CoV-2 is spreading and in-depth analysis of the diagnosis of COVID-19 disease from human respiratory sounds like cough, voice, and breath by analyzing the respiratory sound parameters. We hope this review will provide an initiative for the clinical scientists and researcher's community to initiate open access, scalable, and accessible work in the collective battle against COVID-19.
In the last 2 years, medical researchers and clinical scientists have paid close attention to the problem of respiratory sound classification to classify COVID-19 disease symptoms. In the physical world, very few AI-based (Artificial Intelligence) techniques are often used to detect COVID-19/SARS-CoV-2 respiratory disease symptoms from the human respiratory system-generated acoustic sounds such as acoustic voice sound, breathing (inhale and exhale) sounds, and cough sound. We propose a light-weight Convolutional Neural Network (CNN) with Modified-Mel-frequency Cepstral Coefficient (M-MFCC) using different depths and kernel sizes to classify COVID-19 and other respiratory sound disease symptoms such as Asthma, Pertussis, and Bronchitis. The proposed network outperforms conventional feature extraction models and existing Deep Learning (DL) models for COVID-19/SARS-CoV-2 classification accuracy in the range of 4–10%. The model’s performance is compared with the COVID-19 crowdsourced benchmark dataset and gives a competitive performance. We applied different receptive fields and depths in the proposed model to get different contextual information that should aid in classification. And our experiments suggested 1 12 receptive fields and a depth of 5-Layer for the light-weight CNN to extract and identify the features from respiratory sound data. The model is also trained and tested with different modalities of data to showcase its effectiveness in classification.
Human respiratory sound auscultation (HRSA) parameters have been the real choice for detecting human respiratory diseases in the last few years. It is a challenging task to extract the respiratory sound features from the breath, voice, and cough sounds. The existing methods failed to extract the sound features to diagnose respiratory diseases. We proposed and evaluated a new regularized deep convolutional neural network (RDCNN) architecture to accept COVID-19 sound data and essential sound features. The proposed architecture is trained with the COVID-19 sound data sets and gives a better learning curve than any other state-of-the-art model. We examine the performance of RDCNN with Max-Pooling (Model-1) and without Max-Pooling (Model-2) functions. In this work, we observed that RDCNN model performance with three sound feature extraction methods [Soft-Mel frequency channel, Log-Mel frequency spectrum, and Modified Mel-frequency Cepstral Coefficient (MMFCC) spectrum] for COVID-19 sound data sets (KDD-data, ComParE2021-CCS-CSS-Data, and NeurlPs2021-data). To amplify the models’ performance, we applied the augmentation technique along with regularization. We have also carried out this work to estimate the mutation of SARS-CoV-2 in the five waves using prognostic models (fractal-based). The proposed model achieves state-of-the-art performance on the COVID-19 sound data set to identify COVID-19 disease symptoms. The model’s learnable parameter gradients have vanished in the intermediate layers while optimizing the prediction error which is addressed with our proposed RDCNN model. Our experiments suggested that 3 × 3 kernel size for regularized deep CNN (without max-pooling) shows 2–3% better classification accuracy compared to RDCNN with max-pooling. The experimental results suggest that this new approach may achieve the finest results on respiratory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.