The World Health Organization declared the novel coronavirus disease 2019 a pandemic on March 11, 2020. Along with the coronavirus pandemic, a new crisis has emerged, characterized by widespread fear and panic caused by a lack of information or, in some cases, outright fake messages. In these circumstances, Twitter is one of the most eminent and trusted social media platforms. Fake tweets, on the other hand, are challenging to detect and differentiate. The primary goal of this paper is to educate society about the importance of accurate information and prevent the spread of fake information. This paper has investigated COVID-19 fake data from various social media platforms such as Twitter, Facebook, and Instagram. The objective of this paper is to categorize given tweets as either fake or real news. The authors have tested various deep learning models on the COVID-19 fake dataset. Finally, the CT-BERT and RoBERTa deep learning models outperformed other deep learning models like BERT, BERTweet, AlBERT, and DistlBERT. The proposed ensemble deep learning architecture outperformed CT-BERT and RoBERTa on the COVID-19 fake news dataset using the multiplicative fusion technique. The proposed model’s performance in this technique was determined by the multiplicative product of the final predictive values of CT-BERT and RoBERTa. This technique overcomes the disadvantage of these CT-BERT and RoBERTa models’ incorrect predictive nature. The proposed architecture outperforms both well-known ML and DL models, with 98.88% accuracy and a 98.93% F1-score.
Summary
From the last decade, every developing nations are focusing on the smart cities. Smart city will provide all necessary services, ie, water management, waste management, traffic management, and health services, to its citizens effectively. A new paradigm in the smart vehicles is able to form a network called vehicular ad hoc network (VANET). There is a wireless enabled roadside unit (RSU) through which the vehicle drivers can effectively exchange the important traffic data and take proper driving decisions. Each roadside unit is capable of managing some vehicles, which can form a group. There are many schemes available for data transmission in VANET group but they are less secured. In this paper, we propose an intelligent conditional privacy preserving scheme for vehicular ad hoc networks using elliptic curve cryptography. The security analysis showed that the proposed scheme is intelligent, efficient, and easily deployable.
In the last 2 years, medical researchers and clinical scientists have paid close attention to the problem of respiratory sound classification to classify COVID-19 disease symptoms. In the physical world, very few AI-based (Artificial Intelligence) techniques are often used to detect COVID-19/SARS-CoV-2 respiratory disease symptoms from the human respiratory system-generated acoustic sounds such as acoustic voice sound, breathing (inhale and exhale) sounds, and cough sound. We propose a light-weight Convolutional Neural Network (CNN) with Modified-Mel-frequency Cepstral Coefficient (M-MFCC) using different depths and kernel sizes to classify COVID-19 and other respiratory sound disease symptoms such as Asthma, Pertussis, and Bronchitis. The proposed network outperforms conventional feature extraction models and existing Deep Learning (DL) models for COVID-19/SARS-CoV-2 classification accuracy in the range of 4–10%. The model’s performance is compared with the COVID-19 crowdsourced benchmark dataset and gives a competitive performance. We applied different receptive fields and depths in the proposed model to get different contextual information that should aid in classification. And our experiments suggested 1
12 receptive fields and a depth of 5-Layer for the light-weight CNN to extract and identify the features from respiratory sound data. The model is also trained and tested with different modalities of data to showcase its effectiveness in classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.