Design ideation is a prime creative activity in design. However, it is challenging to support computationally due to its quickly evolving and exploratory nature. The paper presents cooperative contextual bandits (CCB) as a machine-learning method for interactive ideation support. A CCB can learn to propose domain-relevant contributions and adapt their exploration/exploitation strategy. We developed a CCB for an interactive design ideation tool that 1) suggests inspirational and situationally relevant materials ("may AI?"); 2) explores and exploits inspirational materials with the designer; and 3) explains its suggestions to aid reflection. The application case of digital mood board design is presented, wherein visual inspirational materials are collected and curated in collages. In a controlled study, 14 of 16 professional designers preferred the CCB-augmented tool. The CCB approach holds promise for ideation activities wherein adaptive and steerable support is welcome but designers must retain full outcome control. CCS CONCEPTS • Human-centered computing → Interactive systems and tools; • Computing methodologies → Machine learning; • Applied computing → Arts and humanities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.