[1] AIRS was launched on EOS Aqua on 4 May 2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an RMS error of 1 K, and layer precipitable water with an RMS error of 20%, in cases with up to 80% effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the atlaunch algorithm, was described previously. Prelaunch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lowertropospheric temperature retrieved with 80% cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently, HSB channel radiances are
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.