The low-temperature mechanical response of a single porphyrin molecule attached to the apex of an atomic force microscope (AFM) tip during vertical and lateral manipulations is studied. We find that approach-retraction cycles as well as surface scanning with the terminated tip result in atomic-scale friction patterns induced by the internal reorientations of the molecule. With a joint experimental and computational effort, we identify the dicyanophenyl side groups of the molecule interacting with the surface as the dominant factor determining the observed frictional behavior. To this end, we developed a generalized Prandtl-Tomlinson model parametrized using density functional theory calculations that includes the internal degrees of freedom of the side group with respect to the core and its interactions with the underlying surface. We demonstrate that the friction pattern results from the variations of the bond length and bond angles between the dicyanophenyl side group and the porphyrin backbone as well as those of the CN group facing the surface during the lateral and vertical motion of the AFM tip.
The effects of edge hydrogenation and hydroxylation on the relative stability and electronic properties of hexagonal boron nitride quantum dots (h-BNQDs) are investigated. Zigzag edge hydroxylation is found to result in considerable energetic stabilization of h-BNQDs as well as a reduction of their electronic gap with respect to their hydrogenated counterparts. The application of an external in-plane electric field leads to a monotonous decrease of the gap. When compared to their edge-hydrogenated counterparts, significantly lower field intensities are required to achieve full gap closure of the zigzag edge hydroxylated h-BNQDs. These results indicate that edge chemistry may provide a viable route for the design of stable and robust electronic devices based on nanoscale hexagonal boron-nitride systems.
The effects of partial hydrogenation on the structure and electronic properties of boron nitride nanotubes are investigated via density functional theory calculations. We find that the structure of the nanotube may considerably deform depending on the exact locations of the hydrogen atoms adsorption. Furthermore, depending on the tube identity, diameter, and adsorbate density it is found that the bandgap can be gradually reduced as a function of the relative position of the hydrogen atoms and in some cases change its character from indirect to direct and vice versa upon hydrogen adsorption. Our findings indicate that partial hydrogenation may prove as a valuable and experimentally achievable route for controlling the electronic properties of boron nitride nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.