The effects of partial hydrogenation on the structure and electronic properties of boron nitride nanotubes are investigated via density functional theory calculations. We find that the structure of the nanotube may considerably deform depending on the exact locations of the hydrogen atoms adsorption. Furthermore, depending on the tube identity, diameter, and adsorbate density it is found that the bandgap can be gradually reduced as a function of the relative position of the hydrogen atoms and in some cases change its character from indirect to direct and vice versa upon hydrogen adsorption. Our findings indicate that partial hydrogenation may prove as a valuable and experimentally achievable route for controlling the electronic properties of boron nitride nanotubes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.