Layered hybrid perovskites have emerged as a promising alternative to stabilizing hybrid organic–inorganic perovskite materials, which are predominantly based on Ruddlesden‐Popper structures. Formamidinium (FA)‐based Dion‐Jacobson perovskite analogs are developed that feature bifunctional organic spacers separating the hybrid perovskite slabs by introducing 1,4‐phenylenedimethanammonium (PDMA) organic moieties. While these materials demonstrate competitive performances as compared to other FA‐based low‐dimensional perovskite solar cells, the underlying mechanisms for this behavior remain elusive. Here, the structural complexity and optoelectronic properties of materials featuring (PDMA)FAn–1PbnI3n+1 (n = 1–3) formulations are unraveled using a combination of techniques, including X‐ray scattering measurements in conjunction with molecular dynamics simulations and density functional theory calculations. While theoretical calculations suggest that layered Dion‐Jacobson perovskite structures are more prominent with the increasing number of inorganic layers (n), this is accompanied with an increase in formation energies that render n > 2 compositions difficult to obtain, in accordance with the experimental evidence. Moreover, the underlying intermolecular interactions and their templating effects on the Dion‐Jacobson structure are elucidated, defining the optoelectronic properties. Consequently, despite the challenge to obtain phase‐pure n > 1 compositions, time‐resolved microwave conductivity measurements reveal high photoconductivities and long charge carrier lifetimes. This comprehensive analysis thereby reveals critical features for advancing layered hybrid perovskite optoelectronics.
Formamidinium lead iodide perovskites are promising light-harvesting materials, yet stabilizing them under operating conditions without compromising optimal optoelectronic properties remains challenging. We report a multimodal host–guest complexation strategy to overcome this challenge using a crown ether, dibenzo-21-crown-7, which acts as a vehicle that assembles at the interface and delivers Cs+ ions into the interior while modulating the material. This provides a local gradient of doping at the nanoscale that assists in photoinduced charge separation while passivating surface and bulk defects, stabilizing the perovskite phase through a synergistic effect of the host, guest, and host–guest complex. The resulting solar cells show power conversion efficiencies exceeding 24% and enhanced operational stability, maintaining over 95% of their performance without encapsulation for 500 h under continuous operation. Moreover, the host contributes to binding lead ions, reducing their environmental impact. This supramolecular strategy illustrates the broad implications of host–guest chemistry in photovoltaics.
The use of layered perovskites is an important strategy to improve the stability of hybrid perovskite materials and their optoelectronic devices. However, tailoring their properties requires accurate structure determination at the atomic scale, which is a challenge for conventional diffraction-based techniques. We demonstrate the use of nuclear magnetic resonance (NMR) crystallography in determining the structure of layered hybrid perovskites for a mixed-spacer model composed of 2-phenylethylammonium (PEA + ) and 2-(perfluorophenyl)ethylammonium (FEA + ) moieties, revealing nanoscale phase segregation. Moreover, we illustrate the application of this structure in perovskite solar cells with power conversion efficiencies that exceed 21%, accompanied by enhanced operational stability.
Layered hybrid perovskites comprising adamantyl spacer (A) cations based on the A2FAn–1PbnI3n+1 (n = 1–3, FA = formamidinium) compositions have recently been shown to act as promising materials for photovoltaic...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.