Mind wandering (MW) is a subjective, cognitive phenomenon, in which thoughts move away from the task towards an internal train of thoughts, possibly during phases of neuronal sleep-like activity (local sleep, LS). MW decreases cortical processing of external stimuli and is assumed to decouple attention from the external world. Here, we directly tested how indicators of LS, cortical processing and attentional selection change in a pop-out visual search task during phases of MW. Participants brain activity was recorded using magnetoencephalography, MW was assessed via self-report using randomly interspersed probes. As expected, the performance decreased under MW. Consistent with the occurrence of LS, MW was accompanied by a decrease in high frequency activity (HFA, 80-150 Hz) and an increase in slow wave activity (SWA, 1-6 Hz). In contrast, visual attentional selection as indexed by the N2pc component was enhanced during MW with the N2pc amplitude being directly linked to participants’ performance. This observation clearly contradicts accounts of attentional decoupling that would predict a decrease in attention-related responses to external stimuli during MW. Together, our results suggest that MW occurs during phases of LS with processes of attentional target selection being upregulated, potentially to compensate for the mental distraction during MW.
Unique to humans is the ability to report subjective awareness of a broad repertoire of external and internal events. Even when asked to focus on external information, the human’s mind repeatedly wanders to task-unrelated thoughts, which limits reading comprehension or the ability to withhold automated manual responses. This led to the attentional decoupling account of mind wandering (MW). However, manual responses are not an ideal parameter to study attentional decoupling, given that during MW, the online adjustment of manual motor responses is impaired. Hence, whether early attentional mechanisms are indeed downregulated during MW or only motor responses being slowed is not clear. In contrast to manual motor responses, eye movements are considered a sensitive proxy of attentional shifts. Using a simple target detection task, we asked subjects to indicate whether a target was presented within a visual search display by pressing a button while we recorded eye movements and unpredictably asked the subjects to rate their actual level of MW. Generally, manual reaction times increased with MW, both in target absent and present trials. But importantly, even in trials with MW, subjects detected earlier a presented than an absent target. The decoupling account would predict more fixations of the target before pressing the button during MW. However, our results did not corroborate this assumption. Most importantly, subject’s time to direct gaze at the target was equally fast in trials with and without MW. Our results corroborate our hypothesis that during MW early, bottom–up driven attentional processes are not decoupled but selectively manual motor responses are slowed.
Mind wandering (MW) is a subjective, cognitive phenomenon, in which thoughts move away from the task towards an internal train of thoughts, possibly during phases of neuronal sleep-like activity (local sleep, LS). MW decreases cortical processing of external stimuli and is assumed to decouple attention from the external world. Here, we directly tested how indicators of LS, cortical processing and attentional selection change in a pop-out visual search task during phases of MW. Participants brain activity was recorded using magnetoencephalography, MW was assessed via self-report using randomly interspersed probes. As expected, MW worsened performance being accompanied by a decrease in high frequency activity (HFA, 80-150Hz) and an increase in slow wave activity (SWA, 1-6Hz), consistent with the occurrence of LS. In contrast, visual attentional selection as indexed by the N2pc component was enhanced during MW with the N2pc amplitude being directly linked to participants’ performance. This observation clearly contradicts accounts of attentional decoupling predicting a decrease in attention-related responses to external stimuli during MW. Together our results suggest that MW occurs during phases of LS with processes of attentional target selection being upregulated, potentially to compensate for the mental distraction during MW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.