Background: Valproic acid (VPA) is frequently used together with clozapine (CLZ) as mood-stabilizer or for the prevention of seizures in patients with psychotic disorders. VPA is known to reduce levels of the pharmacologically active CLZ-metabolite N-desmethylclozapine (N-DMC), but factors determining the degree of this interaction are unknown. Here, we investigated the relationship between VPA dose and serum concentration on N-DMC levels in a large patient population adjusting for sex, age, and smoking habits as covariates. Methods: A total of 763 patients with steady-state serum concentrations of CLZ and N-DMC concurrently using VPA (cases, n = 76) or no interacting drugs (controls, n = 687) were retrospectively included from a therapeutic drug monitoring service at Diakonhjemmet Hospital, Oslo, between March 2005 and December 2016. In addition to information about prescribed doses, age, sex, smoking habits, and use of other interacting drugs were obtained. The effects of VPA dose and serum concentration on dose-adjusted N-DMC levels were evaluated by univariate correlation and multivariate linear mixed-model analyses adjusting for covariates. Results: The dose-adjusted N-DMC levels were approximately 38% lower in VPA users (cases) versus nonusers (controls) (P < 0.001). Within the VPA cases, a negatively correlation between VPA dose and dose-adjusted N-DMC levels was observed with an estimated reduction of 1.42% per 100-mg VPA dose (P = 0.033) after adjusting for sex, age, and smoking. By contrast, there was no correlation between VPA serum concentration and dose-adjusted N-DMC levels (P = 0.873). Conclusions: The study shows that VPA dose, not concentration, is of relevance for the degree of reduction in N-DMC level in clozapine-treated patients. Presystemic induction of UGT enzymes or efflux transporters might underlie the reduction in N-DMC level during concurrent use of VPA. Our findings indicate that a VPA daily dose of 1500 mg or higher provides a further 21% reduction in N-DMC concentration. This is likely a relevant change in the exposure of this active metabolite where low levels are associated with implications of CLZ therapy.
Background: Valproic acid (VPA) is frequently used with clozapine (CLZ) as mood stabilizer and/or seizure prophylaxis. Valproic acid is known to reduce N-desmethylclozapine (N-DMC) but not CLZ levels. This leads to the hypothesis that VPA induces the CLZ metabolism via non-Ndesmethylation pathways. Therefore, we aimed to investigate the effect of concurrent VPA use on the serum concentrations of a spectrum of CLZ metabolites in patients, adjusting for smoking.Methods: In total, 288 patients with an overall number of 737 serum concentration measurements of CLZ and metabolites concurrently using VPA (cases, n = 22) or no interacting drugs (controls, n = 266) were included from a routine therapeutic drug monitoring service. Linear mixed model analyses were performed to compare the dose-adjusted concentrations (C/D) of CLZ, N-DMC, CLZ 5N/N + -glucuronides, and metabolite-toparent ratios in cases versus controls.Results: After adjusting for covariates, the N-DMC (−40%, P < 0.001) and N + -glucuronide C/Ds (−78%, P < 0.001) were reduced in cases versus controls, while the CLZ C/D was unchanged ( P > 0.7). In contrast, the 5Nglucuronide C/D (+250%, P < 0.001) and 5N-glucuronide-to-CLZ ratios (+120%, P = 0.01) were increased in cases versus controls.Conclusions: Our findings show that complex changes in CLZ metabolism underly the pharmacokinetic interaction with VPA. The lower levels of N-DMC seem to be caused by VPA-mediated induction of CLZ 5N-glucuronide formation, subsequently leading to reduced substrate availability for N-desmethylation. Whether the changes in CLZ metabolism caused by VPA affects the clinical outcome warrants further investigation.
Background Clozapine is an effective drug for the management of schizophrenia that has not responded to other agents, but some patients experience insufficient or adverse effects and discontinue treatment. Objective We investigated a potential association between clozapine serum concentrations and switching to other antipsychotics in a large real-world patient population from a therapeutic drug monitoring service. Methods Absolute and dose-adjusted serum concentrations (concentration-to-dose ratios [C/D ratios]) of clozapine during dosing between 100 and 1000 mg/day were measured in 1979 Norwegian patients during the period 2005-2019. These variables were compared in patients switching to other antipsychotic drugs versus maintaining clozapine treatment using linear mixed models. Smoking habits were known for 49% of the patients. To prevent potential nonadherence affecting clozapine switching, only patients with serum concentrations above 50% of the lower reference range were included. Results In total, 190 patients (9.6%) switched from clozapine to another antipsychotic drug during the study period, whereas the remaining patients were not detected as switchers and were interpreted as maintaining treatment. Patients switching treatment had 23.5% lower absolute concentrations (954 vs. 1245 nmol/L; p < 0.001) and 15.7% lower daily doses (305 vs. 362 mg/day; p < 0.001) of clozapine than did nonswitchers, making the clozapine C/D ratio 9.7% lower in switchers than in nonswitchers after correcting for smoking habits (2.80 vs. 3.10 nmol/L/mg/day; p = 0.032). Conclusions The present study suggests that decreased absolute and dose-adjusted serum concentrations of clozapine were associated with clozapine discontinuation. The significantly reduced clozapine concentrations regardless of prescribed dose in switchers versus nonswitchers may indicate a pharmacokinetic mechanism underlying the risk of clozapine discontinuation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.