Gaining insight in likely disease emergence scenarios is critical to preventing such events from happening. Recent focus has been on emerging zoonoses and on identifying common patterns and drivers of emerging diseases. However, no overarching framework exists to integrate knowledge on all emerging infectious disease events. Here, we propose such a conceptual framework based on changes in the interplay of pathogens, hosts and environment that lead to the formation of novel disease patterns and pathogen genetic adjustment. We categorize infectious disease emergence events into three groups: (i) pathogens showing up in a novel host, ranging from spill-over, including zoonoses, to complete species jumps; (ii) mutant pathogens displaying novel traits in the same host, including an increase in virulence, antimicrobial resistance and host immune escape; and (iii) disease complexes emerging in a new geographic area, either through range expansion or through long distance jumps. Each of these categories is characterized by a typical set of drivers of emergence, matching pathogen trait profiles, disease ecology and transmission dynamics. Our framework may assist in disentangling and structuring the rapidly growing amount of available information on infectious diseases. Moreover, it may contribute to a better understanding of how human action changes disease landscapes globally.
Psittacosis is a zoonotic infectious disease caused by the transmission of the bacterium Chlamydia psittaci from birds to humans. Infections in humans mainly present as community-acquired pneumonia (CAP). However, most cases of CAP are treated without diagnostic testing, and the importance of C. psittaci infection as a cause of CAP is therefore unclear. In this meta-analysis of published CAP-aetiological studies, we estimate the proportion of CAP caused by C. psittaci infection. The databases MEDLINE and Embase were systematically searched for relevant studies published from 1986 onwards. Only studies that consisted of 100 patients or more were included. In total, 57 studies were selected for the meta-analysis. C. psittaci was the causative pathogen in 1·03% (95% CI 0·79-1·30) of all CAP cases from the included studies combined, with a range between studies from 0 to 6·7%. For burden of disease estimates, it is a reasonable assumption that 1% of incident cases of CAP are caused by psittacosis.
Recently, the number of human Q fever cases in the Netherlands increased dramatically. In response to this increase, dairy goats and dairy sheep were vaccinated against Coxiella burnetii. All pregnant dairy goats and dairy sheep in herds positive for Q fever were culled. We identified the effect of vaccination on bacterial shedding by small ruminants. On the day of culling, samples of uterine fluid, vaginal mucus, and milk were obtained from 957 pregnant animals in 13 herds. Prevalence and bacterial load were reduced in vaccinated animals compared with unvaccinated animals. These effects were most pronounced in animals during their first pregnancy. Results indicate that vaccination may reduce bacterial load in the environment and human exposure to C. burnetii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.