We revisit the formulation of non-relativistic (NR) string theory and its target space geometry. We obtain a new formulation in which the geometry contains a two-form field that couples to the tension current and that transforms under string Galilei boosts. This parallels the Newton-Cartan one-form that couples to the mass current of a non-relativistic point particle. We show how this formulation of the NR string arises both from an infinite speed of light limit and a null reduction of the relativistic closed bosonic string. In both cases, the two-form originates from a combination of metric quantities and the Kalb-Ramond field. The target space geometry of the NR string is seen to arise from the gauging of a new algebra that is obtained by an İnönü-Wigner contraction of the Poincaré algebra extended by the symmetries of the Kalb-Ramond field. In this new formulation, there are no superfluous target space fields that can be removed by fixing a Stückelberg symmetry. Classically, there are no foliation/torsion constraints imposed on the target space geometry.
We study complex scalar theories with dipole symmetry and uncover a no-go theorem that governs the structure of such theories and which, in particular, reveals that a Gaussian theory with linearly realised dipole symmetry must be Carrollian. The gauging of the dipole symmetry via the Noether procedure gives rise to a scalar gauge field and a spatial symmetric tensor gauge field. We construct a worldline theory of mobile objects that couple gauge invariantly to these gauge fields. We systematically develop the canonical theory of a dynamical symmetric tensor gauge field and arrive at scalar charge gauge theories in both Hamiltonian and Lagrangian formalism. We compute the dispersion relation of the modes of this gauge theory, and we point out an analogy with partially massless gravitons. It is then shown that these fractonic theories couple to Aristotelian geometry, which is a non-Lorentzian geometry characterised by the absence of boost symmetries. We generalise previous results by coupling fracton theories to curved space and time. We demonstrate that complex scalar theories with dipole symmetry can be coupled to general Aristotelian geometries as long as the symmetric tensor gauge field remains a background field. The coupling of the scalar charge gauge theory requires a Lagrange multiplier that restricts the Aristotelian geometries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.