The moor frog Rana arvalis is a lowland species with a broad Eurasiatic distribution, from arctic tundra through forest to the steppe zone. Its present-day range suggests that glacial refugia of this frog were located outside southern European peninsulas. We studied the species-wide phylogeographical pattern using sequence variation in a 682 base pairs fragment of mtDNA cytochrome b gene; 223 individuals from 73 localities were analysed. Two main clades, A and B, differing by c. 3.6% sequence divergence were detected. The A clade is further subdivided into two subclades, AI and AII differing by 1.0%. All three lineages are present in the Carpathian Basin (CB), whereas the rest of the species range, including huge expanses of Eurasian lowlands, are inhabited solely by the AI lineage. We infer that AII and B lineages survived several glacial cycles in the CB but did not expand, at least in the present interglacial, to the north. The geographical distribution and genealogical relationships between haplotypes from the AI lineage indicate that this group had two glacial refugia, one located in the eastern part of the CB and the other probably in southern Russia. Populations from both refugia contributed to the colonization of the western part of the range, whereas the eastern part was colonized from the eastern refugium only. The effective population size as evidenced by theta(ML) is an order of magnitude higher in the AI lineage than in the AII and B lineages. Demographic expansion was detected in all three lineages.
Cytological aspects of hemiclonal (meroclonal) inheritance in diploid and triploid males of the hybridogenetic frog Rana esculenta (Rana ridibunda x Rana lessonae) have been studied by DNA flow cytometry. The fact that the R. ridibunda genome contains 16% more DNA than the R. lessonae genome provides the ability to discern cells containing genomes of any species from the water-frog complex under study. Data are presented showing that elimination of the R. ridibunda genome occurs in hybridogenetic males from certain populations. In triploid males, the cytogenetic mechanism of hemiclonal inheritance is simpler than in diploids: after the elimination of a genome (always the genome in the minority in the triploid set; "homogenizing elimination"), no compensatory duplication of the remaining genetic material is necessary, as it is in diploids. The process of elimination can be visualized in triploid males by using DNA flow cytometry to identify cells in the special phase of the spermatogonial cell cycle that we termed the E phase.
Cytological evidence for two germ cell lineages, each with the DNA-content of one of the parental species only, was obtained for certain males of the hybridogenic water frog Rana esculenta (R. ridibunda x R. lessonae) by means of DNA flow cytometry. The approach was based on the 16 +/- 2% difference in the DNA-content of genomes of the parental species. Two types of germ cells were observed in six out of 39 males studied from populations where such males did exist. The term 'hybrid amphispermy' is proposed for the phenomenon. Occurrence of the 'hybrid amphispermy' suggests that the direction of elimination (i.e., which genome being eliminated) is determined in R. esculenta by the relative activity of putative elimination-inducing factor(s) in each of the parental genomes, which can alternate from cell to cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.