Multiple exciton generation (MEG) in PbSe quantum dots (QDs), PbSe(x)S(1-x) alloy QDs, PbSe/PbS core/shell QDs, and PbSe/PbSe(y)S(1-y) core/alloy-shell QDs was studied with time-resolved optical pump and probe spectroscopy. The optical absorption exhibits a red-shift upon the introduction of a shell around a PbSe core, which increases with the thickness of the shell. According to electronic structure calculations this can be attributed to charge delocalization into the shell. Remarkably, the measured quantum yield of MEG, the hot exciton cooling rate, and the Auger recombination rate of biexcitons are similar for pure PbSe QDs and core/shell QDs with the same core size and varying shell thickness. The higher density of states in the alloy and core/shell QDs provide a faster exciton cooling channel that likely competes with the fast MEG process due to a higher biexciton density of states. Calculations reveal only a minor asymmetric delocalization of holes and electrons over the entire core/shell volume, which may partially explain why the Auger recombination rate does not depend on the presence of a shell.
In Kelvin Probe Force Microscopy (KPFM) electronic crosstalk can occur between the excitation signal and probe deflection signal. Here, we demonstrate how a small modification to our commercial instrument enables us to literally switch the crosstalk on and off. We study in detail the effect of crosstalk on open-loop KPFM and compare with closed-loop KPFM. We measure the pure crosstalk signal and verify that we can correct for it in the data-processing required for open-loop KPFM. We also demonstrate that open-loop KPFM results are independent of the frequency and amplitude of the excitation signal, provided that the influence of crosstalk has been eliminated.
Kelvin probe force microscopy (KPFM) is a popular tool for studying properties of semiconductors. However, the interpretation of its results is complicated by the possibility of so-called band bending and the presence of surface charges. In this work we study two different interpretations for KPFM on semiconductors: the contact potential difference (CPD) interpretation, which interprets the measured potential as the work function difference between the sample and the probe, and a newer, alternative, interpretation proposed by Baumgart, Helm and Schmidt (BHS). By performing model calculations we demonstrate that these models generally lead to very different results.Hence it is important to decide which one is correct. We demonstrate that BHS predictions for the Kelvin voltage difference between the p and n parts of a pn-junction are inconsistent with a set of experimental results from the literature. In addition, the BHS interpretation predicts an independence from the probe material as well as from surface treatments, which we both find to disagree with experiment. On the other hand, we present a theoretical argument for the validity of the CPD interpretation and we show that the CPD interpretation is able to accommodate all of these experimental results. Thus we posit that the BHS interpretation is generally not suitable for the analysis of KPFM on semiconductors and that the CPD interpretation should be used instead. * l.polak@vu.nl
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.