Analytical and finite element models (FEMs) were used to quantify poroelastic material properties for a human intervertebral disk. An axisymmetric FEM based on a poroelastic view of disk constituents was developed for a representative human spinal motion segment (SMS). Creep and steady-state response predicted by FEMs agreed with experimental observations, i.e., long-time creep occurs with flow in the SMS, whereas for rapid steady-state loading an "undrained," nearly incompressible response is evident. A relatively low value was determined for discal permeability. Transient and long-term creep FE analyses included the study of deformation, pore fluid flow, stress, and pore fluid pressure. Relative fluid motion associated with transient creep is related to nuclear nutrition and the overall mechanical response in the normal disk. Degeneration of the disk may be associated with an increase in permeability.
Criteria for developing active and passive isolation mechanisms for reducing the effects of whole-body vibration exposure rely on a thorough understanding of the stiffness, damping, and resonance behaviors of the human or human surrogate body. Three Rhesus monkeys were exposed to seated whole-body sinusoidal vibration between 3 and 20 Hz at 0.69 and 3.47 msec-2 rms (0.1 and 0.5 g peak) accelerations. The mechanical impedance magnitude and phase were calculated as the ratio and phase relation between the transmitted force and input velocity, respectively, at the seat. The resultant profiles showed a significant decrease in the primary resonance frequency with increasing acceleration. At the lower acceleration level, a second lower impedance peak was observed at approximately 5 Hz. A three-mass, two degree-of-freedom model, which included upper torso and leg representation, was used to determine the mechanical parameters that best described the measured responses. The mean stiffness coefficients and the mean undamped natural frequencies associated with the upper torso and leg subsystems showed a significant decrease with increases in the acceleration level. The results of this study strongly suggested that nonlinear stiffness properties were responsible for the observed differences in the biodynamic response of the Rhesus monkey with acceleration level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.