Microalgae are among the most productive biological systems for converting sunlight into chemical energy, which is used to capture and transform inorganic carbon into biomass. The efficiency of carbon dioxide capture depends on the cultivation system configuration (photobioreactors or open systems) and can vary according to the state of the algal physiology, the chemical composition of the nutrient medium, and environmental factors such as irradiance, temperature and pH. This mini-review is focused on some of the most important environmental factors determining photosynthetic activity, carbon dioxide biofixation, cell growth rate and biomass productivity by microalgae. These include carbon dioxide and O2 concentrations, light intensity, cultivation temperature and nutrients. Finally, a review of the operation of microalgal cultivation systems outdoors is presented as an example of the impact of environmental conditions on biomass productivity and carbon dioxide fixation.
A population of Desertifilum (Cyanobacteria, Oscillatoriales) from an oligotrophic desertic biotope was isolated and characterized using a polyphasic approach including molecular, morphological, and ecological information. The population was initially assumed to be a new species based on ecological and biogeographic separation from other existing species, however, phylogenetic analyses based on sequences of the 16S rRNA gene and 16S–23S ITS region, placed this strain clearly within the type species, Desertifilum tharense. Comparative analysis of morphology, 16S rRNA gene similarity, 16S–23S ITS secondary structure, and percent dissimilarity of the ITS regions for all characterized strains supports placing the six Desertifilum strains (designated as PD2001/TDC17, UAM‐C/S02, CHAB7200, NapGTcm17, IPPAS B‐1220, and PMC 872.14) into D. tharense. The recognition of Desertifilum salkalinema and Desertifilum dzianense is not supported, although our analysis does support continued recognition of Desertifilum fontinale. Pragmatic criteria for recognition of closely related species are proposed based on this study and others, and more rigorous review of future taxonomic papers is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.