Carcinoma‐associated mesenchymal stem cells (CA‐MSCs) are critical stromal progenitor cells within the tumor microenvironment (TME). We previously demonstrated that CA‐MSCs differentially express bone morphogenetic protein family members, promote tumor cell growth, increase cancer “stemness,” and chemotherapy resistance. Here, we use RNA sequencing of normal omental MSCs and ovarian CA‐MSCs to demonstrate global changes in CA‐MSC gene expression. Using these expression profiles, we create a unique predictive algorithm to classify CA‐MSCs. Our classifier accurately distinguishes normal omental, ovary, and bone marrow MSCs from ovarian cancer CA‐MSCs. Suggesting broad applicability, the model correctly classifies pancreatic and endometrial cancer CA‐MSCs and distinguishes cancer associated fibroblasts from CA‐MSCs. Using this classifier, we definitively demonstrate ovarian CA‐MSCs arise from tumor mediated reprograming of local tissue MSCs. Although cancer cells alone cannot induce a CA‐MSC phenotype, the in vivo ovarian TME can reprogram omental or ovary MSCs to protumorigenic CA‐MSCs (classifier score of >0.96). In vitro studies suggest that both tumor secreted factors and hypoxia are critical to induce the CA‐MSC phenotype. Interestingly, although the breast cancer TME can reprogram bone marrow MSCs into CA‐MSCs, the ovarian TME cannot, demonstrating for the first time that tumor mediated CA‐MSC conversion is tissue and cancer type dependent. Together these findings (a) provide a critical tool to define CA‐MSCs and (b) highlight cancer cell influence on distinct normal tissues providing powerful insights into the mechanisms underlying cancer specific metastatic niche formation. S
tem
C
ells
2019;37:257–269
Ovarian clear cell carcinoma (OCCC) is a deadly and treatment-resistant cancer which arises within the unique microenvironment of endometriosis. In this study, we identified a subset of endometriosis derived mesenchymal stem cells (enMSCs) characterized by loss of CD10 expression that specifically support OCCC growth. RNA sequencing identified alterations in iron export in CD10 negative enMSCs and reciprocal changes in metal transport in co-cultured OCCC cells. CD10 negative enMSCs exhibited elevated expression of iron export proteins hephaestin and ferroportin and donate iron to associated OCCCs, functionally increasing the levels of labile intracellular iron. Iron is necessary for OCCC growth, and CD10-negative enMSCs prevented the growth inhibitory effects of iron chelation. Additionally, enMSC-mediated increases in OCCC iron resulted in a unique sensitivity to ferroptosis. In vitro and in vivo, treatment with the ferroptosis inducer erastin resulted in significant death of cancer cells grown with CD10-negative enMSCs. Collectively, this work describes a novel mechanism of stromal-mediated tumor support via iron donation. This work also defines an important role of endometriosis-associated MSCs in supporting OCCC growth and identifies a critical therapeutic vulnerability of OCCC to ferroptosis based on stromal phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.