Quantum‐confined Au nanoclusters exhibit molecule‐like properties, including atomic precision and discrete energy levels. The electrical conductivity of Au nanocluster films can vary by several orders of magnitude and is determined by the strength of the electronic coupling between the individual nanoclusters in the film. Similar to quantum‐confined, semiconducting quantum dots, the electrical coupling in films is dependent on the size and structure of the Au core and the length and conjugation of the organic ligands surrounding it. Unlike quantum dots, however, semiconducting transport has not been reported in Au nanocluster films. Here, it is demonstrated that through a simple yet careful choice of cluster size and organic ligands, stable Au nanocluster films can electronically couple and become semiconducting, exhibiting electric field effect and photoconductivity. The molecule‐like nature of the Au nanoclusters is evidenced by a hopping transport mechanism reminiscent of doped, disordered organic semiconductor films. These results demonstrate the potential of metal nanoclusters as a solution‐processed material for semiconducting devices.
Poly(triazine imide) (PTI) is a material belonging to the group of carbon nitrides and has shown to have competitive properties compared to melon or g-C3N4, especially in photocatalysis. As most of the carbon nitrides, PTI is usually synthesized by thermal or hydrothermal approaches. We present and discuss an alternative synthesis for PTI which exhibits a pH-dependent solubility in aqueous solutions. This synthesis is based on the formation of radicals during electrolysis of an aqueous melamine solution, coupling of resulting melamine radicals and the final formation of PTI. We applied different characterization techniques to identify PTI as the product of this reaction and report the first liquid state NMR experiments on a triazine-based carbon nitride. We show that PTI has a relatively high specific surface area and a pH-dependent adsorption of charged molecules. This tunable adsorption has a significant influence on the photocatalytic properties of PTI, which we investigated in dye degradation experiments.
We present a colloidal synthesis strategy to obtain single-crystalline PbS nanorings. By controlling the ripening process in the presence of halide ions, a transformation of initial PbS nanosheets to frame-like structures and finally to nanorings was achieved. We found that the competing ligands oleic acid, oleate and halide ions play an important role in the formation of these nanostructures. Therefore, we propose a formation mechanism based on a thermally induced ripening of crystal facets dependent on the surface passivation. With this method, it became possible to synthesize colloidal nanorings of cubic crystal phase galena PbS. The synthesis was followed via TEM and the products are characterized by XRD, AFM and STEM tomography. Control of the initial nanoframe morphology allows adjusting the later nanoring dimensions.
Copolymerization of melamine with 2,4,6-triaminopyrimidine (TAP) in an electrochemically induced polymerization process leads to the formation of molecular doped poly(triazine imide) (PTI). The polymerization is based on the electrolysis of water and evolving radicals during this process. The incorporation of TAP is shown by techniques such as elemental analysis, Fourier transform infrared and NMR spectroscopies, and powder X-ray diffraction, and it is shown that the carbon content can be tuned by the variation of the molar ratio of the two precursors. This incorporation of TAP directly influences the electronic structure of PTI and as a result, a red shift can be observed in UV–vis spectroscopy. The smaller band gap and the increased absorption in the visible range lead to improved photocatalytic properties. In dye degradation experiments, it was possible to observe an increase of the rate of the degradation of methylene blue by a factor of 4 in comparison to undoped PTI or 7 if compared to melon.
We present the synthesis and characterization of PbI2 nanorings prepared via a direct colloidal route. The ring structures are obtained by etching as prepared PbI2 nanosheets with trioctylphosphine and possess thicknesses between 20 nm and 85 nm and lateral dimensions of up to 10 μm. The formation process was analyzed and discussed as well as the electrical and optical measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.