We have developed and tested two EEG-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target Practice, is a system for one-dimensional device control, in which participants use biofeedback to learn voluntary control of their EEG spectra. Target Practice uses a KPLS classifier to map power spectra of 30-electrode EEG signals to rightward or leftward position of a moving cursor on a computer display. Three subjects learned to control motion of a cursor on a video display in multiple blocks of 60 trials over periods of up to six weeks. The best subject's average skill in correct selection of the cursor direction grew from 58% to 88% after 13 training sessions. Target Practice also implements online control of two artifact sources: a) removal of ocular artifact by linear subtraction of wavelet-smoothed vertical and horizontal EOG signals, b) control of muscle artifact by inhibition of BCI training during periods of relatively high power in the 40-64 Hz band.The second BCI, Think Pointer, is a system for two-dimensional cursor control. Steady-state visual evoked potentials (SSVEP) are triggered by four flickering checkerboard stimuli located in narrow strips at each edge of the display. The user attends to one of the four beacons to initiate motion in the desired direction. The SSVEP signals are recorded from eight electrodes located over the occipital region. A KPLS classifier is individually calibrated to map multichannel frequency bands of the SSVEP signals to right-left or up-down motion of a cursor on a computer display. The display stops moving when the user attends to a central fixation point. As for Target Practice, Think Pointer also implements wavelet-based online removal of ocular artifact; however, in Think Pointer muscle artifact is controlled via adaptive normalization of the SSVEP. Training of the classifier requires about three minutes. We have tested our system in real-time operation in three human subjects. Across subjects and sessions, control accuracy ranged from 80% to 100% correct with lags of 1-5 seconds for movement initiation and turning. We have also developed a realistic demonstration of our system for control of a moving map display (http://ti.arc.nasa.gov/story.php?id=265&sec=4).
Mental fatigue was associated with increased power in frontal theta (θ) and parietal alpha (α) EEG rhythms. A statistical classifier can use these effects to model EEG-fatigue relationships accurately. Participants (n = 22) solved math problems on a computer until either they felt exhausted or 3 h had elapsed. Pre-and post-task mood scales showed that fatigue increased and energy decreased. Mean response times rose from 6.7 s to 7.9 s but accuracy did not change significantly. Mean power spectral densities or PSDs of θ and α bands rose by 29% and 44%, respectively. A kernel partial least squares classifier trained to classify PSD coefficients (1-18 Hz) of single 13-s EEG segments from alert or fatigued task periods was 91% to 100% accurate. For EEG segments from other task periods, the classifier outputs tracked the time course of the development of mental fatigue. By this measure, most subjects became substantially fatigued after 60 min of task performance. However, the trajectories of individual classifier outputs showed that EEG signs of developing fatigue were present in all subjects after 15-30 minutes of task performance. The results show that EEG can track the development of mental fatigue over time with accurate updates on a time scale a short as 13 seconds. In addition, the results agree with the notion that growing mental fatigue produces a shift away from executive and attention networks to default mode and is accompanied by a shift in alpha frequency to the lower alpha band.
In this paper, we propose the application of the Kernel Principal Component Analysis (PCA) technique for feature selection in a high-dimensional feature space, where input variables are mapped by a Gaussian kernel. The extracted features are employed in the regression problems of chaotic Mackey-Glass time-series prediction in a noisy environment and estimating human signal detection performance from brain event-related potentials elicited by task relevant signals. We compared results obtained using either Kernel PCA or linear PCA as data preprocessing steps. On the human signal detection task, we report the superiority of Kernel PCA feature extraction over linear PCA. Similar to linear PCA, we demonstrate de-noising of the original data by the appropriate selection of various nonlinear principal components. The theoretical relation and experimental comparison of Kernel Principal Components Regression, Kernel Ridge Regression and ⑀-insensitive Support Vector Regression is also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.