Abstract. The classic readers-writers problem has been extensively studied. This holds to a lesser degree for the reentrant version, where it is allowed to nest locking actions. Such nesting is useful when a library is created with various procedures that each start and end with a lock. Allowing nesting makes it possible for these procedures to call each other. We considered an existing widely used industrial implementation of the reentrant readers-writers problem. We modeled it using a model checker revealing a serious error: a possible deadlock situation. The model was improved and checked satisfactorily for a fixed number of processes. To achieve a correctness result for an arbitrary number of processes the model was converted to a theorem prover with which it was proven.
Abstract. Using PVS (Prototype Verification System), we prove that an industry designed scheduler for a smartcard personalization machine is safe and optimal. This scheduler has previously been the subject of research in model checked scheduling synthesis and verification. These verification and synthesis efforts had only been done for a limited number of personalization stations. We have created an executable model and have proven the scheduling algorithm to be optimal and safe for any number of personalization stations. This result shows that theorem provers can be successfully used for industrial problems in cases where model checkers suffer from state explosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.