Perovskite materials are now an important class of materials in the application areas of photovoltaics and photocatalysis. Inorganic perovskites such as BiFeO3 (BFO) are promising photocatalyst materials with visible light activity and inherent stability. Here we report the large area sol-gel synthesis of BFO films for solar stimulated water photo oxidation. By modifying the sol-gel synthesis process we have produced a perovskite material that has p-type behaviour and a flat band potential of ∼1.15 V (versus NHE). The photocathode produces a density of -0.004 mA cm(-2) at 0 V versus NHE under AM1.5 G illumination. We further show that 0.6 μmol h(-1) of O2 was produced at an external bias of -0.5 V versus Ag/AgCl. The addition of a non-percolating conducting network of Ag increases the photocurrent to -0.07 mA cm(-2) at 0 V versus NHE (at 2% Ag loading) with an increase to 2.7 μmol h(-1) for O2 production. We attribute the enhancement in photoelectrochemical performance to increased light absorption due light scattering by the incorporated Ag particles, improved charge transfer kinetics at the Ag/BFO interface and reduced over potential losses. We support these claims by an observed shift in flat band and onset potentials after Ag modification through UV-vis spectroscopy, Mott-Schottky plots and j-v curve analysis.
This paper reports for the first time the use of perovskite bismuth ferrite (BiFeO3 or BFO) on ZnO-based solid state solar cells using only chemical solution methods for materials synthesis. As ZnO has poor chemical stability in acidic and corrosive environments, a buffer method using aminosilane ((3-aminopropyltriethoxysilane or H2N(CH2)3Si(OC2H5)3)) coating was used to provide a protective coating on the ZnO nanorods. The aminosilane layer was removed after BFO coating. The solid state solar cells, sensitized by N719, used CuSCN as the hole conductor and were tested under 100 mW cm(-2), AM 1.5G simulated sunlight. The photovoltaic performance showed current density improvement from 0.64 mA cm(-2) to 1.4 mA cm(-2) and efficiencies from 0.1% to 0.38% when comparing between ZnO and ZnO/BFO solar cells. The observed ca. 400% improved performance is shown to result from BFO's role as an electron blocking layer.
ZnO is widely used as an n-type semiconductor in various solar cell structures; including dye-sensitized, organic, hybrid and solid-state solar cells. Here, we review advances in ZnO-based solar cell applications, looking at the influence of morphology, as well as the effect of different materials and sensitizers. ZnO morphologies play an important role in changing the surface area and charge transport properties, affecting the performance of the solar cells. External quantum efficiencies using purely ZnO as the active material has generally been below 3% with some dye-sensitized solar cells using liquid electrolytes above 5%. Sensitizers such as organic and inorganic dyes, quantum dots and hole conductors have been shown to influence cell efficiency by improving the absorption or providing improved charge transport. The combination of ZnO with other nanomaterials such as, TiO2, SiO2 and ZrO2 in core-shell structures or buffer layers creates improved electron transport by controlling recombination at interfaces and increasing stability of the device. The highest reported efficiencies to date were from combinational structures at 7.07% for ZnO nanosheets with TiO2 nanoparticulate coating and 7% for ZnO core-TiO2 shell structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.