The aim of this review was to provide an overview of assistive exoskeletons that have specifically been developed for industrial purposes and to assess the potential effect of these exoskeletons on reduction of physical loading on the body. The search resulted in 40 papers describing 26 different industrial exoskeletons, of which 19 were active (actuated) and 7 passive (non-actuated). For 13 exoskeletons, the effect on physical loading have been evaluated, mainly in terms of muscle activity. All passive exoskeletons retrieved were aimed to support the low back. 10 to 40% reductions in back muscle activity during dynamic lifting and static holding have been reported. Both lower body, trunk and upper body regions could benefit from active exoskeletons. Muscle activity reductions up to 80% have been reported as an effect of active exoskeletons. Exoskeletons have the potential to considerably reduce the underlying factors associated with work-related musculoskeletal injury.
Practitioner SummaryWorldwide, a significant interest in industrial exoskeletons does exist, but a lack of specific safety standards and several technical issues hinder mainstay practical use of exoskeletons in industry. Specific issues include discomfort (for passive and active exoskeletons), weight of device, alignment with human anatomy and kinematics, and detection of human intention to enable smooth movement (for active exoskeletons).2
The aim of this study was to evaluate the effect of an industrial exoskeleton on muscle activity, perceived musculoskeletal effort, measured and perceived contact pressure at the trunk, thighs and shoulders, and subjective usability for simple sagittal plane lifting and lowering conditions. Twelve male participants lifted and lowered a box of 7.5 kg and 15 kg, respectively, from mid-shin height to waist height, five times, both with and without the exoskeleton. The device significantly reduced muscle activity of the Erector Spinae (12%-15%) and Biceps Femoris (5%). Ratings of perceived musculoskeletal effort in the trunk region were significantly less with the device (9.5%-11.4%). The measured contact pressure was highest on the trunk (91.7 kPa-93.8 kPa) and least on shoulders (47.6 kPa-51.7 kPa), whereas pressure was perceived highest on the thighs (35-44% of Max LPP). Six of the users rated the device usability as acceptable. The exoskeleton reduced musculoskeletal loading on the lower back and assisted with hip extensor torque during lifting and lowering. Contact pressures fell below the Pain Pressure Threshold. Perceived pressure was not exceptionally high, but sufficiently high to cause discomfort if used for long durations.
This study is an updated systematic review of papers published in the last five years on industrial back-support exoskeletons. The research questions were aimed at addressing the recent findings regarding objective (e.g. body loading, user performance) and subjective evaluations (e.g. user satisfaction), potential side effects, and methodological aspects of usability testing. Thirteen studies of active and twenty of passive exoskeletons were identified. The exoskeletons were tested during lifting and bending tasks, predominantly in laboratory settings and among healthy young men. In general, decreases in participants' back-muscle activity, peak L5/S1 moments and spinal compression forces were reported. User endurance during lifting and static bending improved, but performance declined during tasks that required increased agility. The overall user satisfaction was moderate. Some side effects were observed, including increased abdominal/lower-limb muscle activity and changes in joint angles. A need was identified for further field studies, involving industrial workers, and reflecting actual work situations.
These promising results suggest that cognitive functional therapy should be compared with other conservative interventions for the management of disabling NSCLBP in secondary care settings in large randomized clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.