This study is an updated systematic review of papers published in the last five years on industrial back-support exoskeletons. The research questions were aimed at addressing the recent findings regarding objective (e.g. body loading, user performance) and subjective evaluations (e.g. user satisfaction), potential side effects, and methodological aspects of usability testing. Thirteen studies of active and twenty of passive exoskeletons were identified. The exoskeletons were tested during lifting and bending tasks, predominantly in laboratory settings and among healthy young men. In general, decreases in participants' back-muscle activity, peak L5/S1 moments and spinal compression forces were reported. User endurance during lifting and static bending improved, but performance declined during tasks that required increased agility. The overall user satisfaction was moderate. Some side effects were observed, including increased abdominal/lower-limb muscle activity and changes in joint angles. A need was identified for further field studies, involving industrial workers, and reflecting actual work situations.
The large-scale adoption of occupational exoskeletons (OEs) will only happen if clear evidence of effectiveness of the devices is available. Performing product-specific field validation studies would allow the stakeholders and decision-makers (e.g., employers, ergonomists, health, and safety departments) to assess OEs’ effectiveness in their specific work contexts and with experienced workers, who could further provide useful insights on practical issues related to exoskeleton daily use. This paper reviews present-day scientific methods for assessing the effectiveness of OEs in laboratory and field studies, and presents the vision of the authors on a roadmap that could lead to large-scale adoption of this technology. The analysis of the state-of-the-art shows methodological differences between laboratory and field studies. While the former are more extensively reported in scientific papers, they exhibit limited generalizability of the findings to real-world scenarios. On the contrary, field studies are limited in sample sizes and frequently focused only on subjective metrics. We propose a roadmap to promote large-scale knowledge-based adoption of OEs. It details that the analysis of the costs and benefits of this technology should be communicated to all stakeholders to facilitate informed decision making, so that each stakeholder can develop their specific role regarding this innovation. Large-scale field studies can help identify and monitor the possible side-effects related to exoskeleton use in real work situations, as well as provide a comprehensive scientific knowledge base to support the revision of ergonomics risk-assessment methods, safety standards and regulations, and the definition of guidelines and practices for the selection and use of OEs.
In this article, we review the literature on quantitative sensory testing of deep somatic pain by means of computerized cuff pressure algometry (CPA) in search of pressure-related safety guidelines for wearable soft exoskeleton and robotics design. Most pressure-related safety thresholds to date are based on interface pressures and skin perfusion, although clinical research suggests the deep somatic tissues to be the most sensitive to excessive loading. With CPA, pain is induced in deeper layers of soft tissue at the limbs. The results indicate that circumferential compression leads to discomfort at ∼16-34 kPa, becomes painful at ∼20-27 kPa, and can become unbearable even below 40 kPa.
Objective To establish the relationship between circumferential compression on the lower limb during simulated ramp and staircase profile loading, and the resultant relationship with discomfort/pain and tissue oxygenation. Background Excessive mechanical loading by exoskeletons on the body can lead to pressure-related soft tissue injury. Potential tissue damage is associated with objective oxygen deprivation and accompanied by subjective perception of pain and discomfort. Method Three widths of pneumatic cuffs were inflated at the dominant thigh and calf of healthy participants using two inflation patterns (ramp and staircase), using a computer-controlled pneumatic rig. Participants rated discomfort on an electronic visual analog scale and deep tissue oxygenation was monitored using near infrared spectroscopy. Results Circumferential compression with pneumatic cuffs triggered discomfort and pain at lower pressures at the thigh, with wider cuffs, and with a ramp inflation pattern. Staircase profile compression caused an increase in deep tissue oxygenation, whereas the ramp profile compression decreased it. Conclusion Discomfort and pain during circumferential compression at the lower limb is related to the width of pneumatic cuffs, the inflation pattern, and the volume of soft tissue at the assessment site. The occurrence of pain is also possibly related to the decrease in deep tissue oxygenation during compression. Application Our findings can be used to inform safe and comfortable design of soft exoskeletons to avoid discomfort and possible soft tissue injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.