We compute the hybrid limit (in the sense of Boucksom-Jonsson) of the family of Kähler-Einstein volume forms on a degeneration of canonically polarized manifolds. The limit measure is a weighted sum of Dirac masses at divisorial valuations, determined by the natural algebro-geometric limit of the family. We also make some remarks on the non-archimedean Monge-Ampère operator and hybrid continuity of Kähler-Einstein potentials in this context.Résumé. -Nous calculons la limite hybride (au sens de Boucksom-Jonsson) de la famille des formes volumes de Kähler-Einstein sur une dégénérescence de variétés canoniquement polarisées. La mesure limite est une somme pondérée de masses de Dirac en des valuations divisorielles, déterminées par la limite algébro-géométrique naturelle de la famille. Nous formulons aussi des remarques sur l'opérateur de Monge-Ampère non-archimédien et la continuité hybride des potentiels de Kähler-Einstein dans ce contexte.
We study integral dlt models of a proper C((t))-variety X along a toric stratum of the special fiber. We prove that the associated Berkovich retraction -from the non-archimedean analytification of X onto the dual complex of the model -is an affinoid torus fibration around the simplex corresponding to the toric stratum, which extends results in [NXY19]. This allows us to construct new types of non-archimedean retractions for maximally degenerate families of quartic K3 surfaces and quintic 3-folds, by gluing several non-archimedean SYZ fibrations, each one toric along a codimension one stratum. We then show that the new retractions induce the same singular integral affine structures that arise on the dual complex of toric degenerations in the Gross-Siebert program, as well as on the Gromov-Hausdorff limit of the family.
Let (X, L) be a polarized scheme over a Banach ring A. We define and study a class PSH(X, L) of plurisubharmonic metrics on the Berkovich analytification X an . We focus mainly on the case where A is a hybrid ring of power series, so that X an is the hybrid space associated to a degeneration of complex manifolds X. We then prove that any plurisubharmonic metric on (X, L) with logarithmic growth at zero admits a canonical plurisubharmonic extension to the hybrid space X hyb . We also discuss the continuity of the family of Monge-Ampère measures associated to a continuous plurisubharmonic hybrid metric.Résumé (Théorie du pluripotentiel global sur les espaces hybrides). -Soit (X, L) un schéma polarisé sur un anneau de Banach A. Nous définissons et étudions la classe des métriques plurisousharmoniques PSH(X, L) sur l'analytifié de Berkovich X an . Nous nous intéressons en particulier au cas où A est l'anneau hybride des séries convergentes, et X an est l'espace hybride associé à une dégénérescence de variétés complexes X. Nous démontrons alors que toute métrique plurisousharmonique sur (X, L) à croissance logarithmique en zéro admet une extension plurisousharmonique canonique à l'espace hybride X hyb . Nous discutons aussi de la continuité de la famille de mesures de Monge-Ampère associée à une métrique hybride plurisousharmonique continue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.