BackgroundHigh throughput sequencing (HTS) boosted the discovery of novel viruses and new variants of known viruses. Here we investigated the presence of viruses in 12 pools of sand flies captured in three climatic periods in RAPELD grids at Rio Claro, Chapada dos Guimarães and at Pirizal, North Pantanal, Mato Grosso State, Midwestern Brazil by HTS, viral isolation of a putative Phlebovirus positive pool in Vero cells, RT-PCR and transmission electron microscopy (TEM).ResultsOne pool containing three Lutzomyia (Lutzomyia) longipalpis sand flies captured in the transitional climatic period in North Pantanal showed a tripartite genomic sequence of a putative novel Phlebovirus belonging to the phlebotomus fever serogroup. Phylogenetic analysis revealed this virus is closely related and share a common ancestor with phleboviruses included in the same clade: Chagres, Urucuri and Uriurana virus. RNA-dependent RNA polymerase (RdRP) presented 60%, 59% and 58% of amino-acid (aa) similarity with these phleboviruses, respectively. Similarity of Nucleoprotein and NSs protein codified by ambissense strategy of segment S was of 49% and 37%, respectively, with the proteins of the closest phlebovirus, Uriurana virus. Glycoproteins (G1, G2) and NSm protein presented 49% and 48% aa similarity with Chagres and Uriurana virus, respectively. Uriurana virus was isolated from sand flies in Brazilian Amazon and Urucuri from rodents in Utinga forest, Pará State. Chagres virus is an arbovirus responsible for outbreaks of febrile illness in Panama. This phlebovirus was isolated in Vero cells, confirmed by TEM and RT-PCR for the L segment of the virus, and named Viola phlebovirus.ConclusionsHTS, viral isolation, RT-PCR and TEM showed the presence of one virus in sand flies from North Pantanal with identity to a putative novel Phlebovirus from phlebotomus fever serogroup, named Viola phlebovirus.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-2985-3) contains supplementary material, which is available to authorized users.
Sex differences in the brain of mammals range from neuroarchitecture through cognition to cellular metabolism. The hippocampus, a structure mostly associated with learning and memory, presents high vulnerability to neurodegeneration and aging. Therefore, we explored basal sex-related differences in the proteome of organotypic hippocampal slice culture, a major in vitro model for studying the cellular and molecular mechanisms related to neurodegenerative disorders. Results suggest a greater prevalence of astrocytic metabolism in females and significant neuronal metabolism in males. The preference for glucose use in glycolysis, pentose phosphate pathway and glycogen metabolism in females and high abundance of mitochondrial respiration subunits in males support this idea. An overall upregulation of lipid metabolism was observed in females. Upregulation of proteins responsible for neuronal glutamate and GABA synthesis, along with synaptic associated proteins, were observed in males. In general, the significant spectrum of pathways known to predominate in neurons or astrocytes, together with the well-known neuronal and glial markers observed, revealed sex-specific metabolic differences in the hippocampus. TEM qualitative analysis might indicate a greater presence of mitochondria at CA1 synapses in females. These findings are crucial to a better understanding of how sex chromosomes can influence the physiology of cultured hippocampal slices and allow us to gain insights into distinct responses of males and females on neurological diseases that present a sex-biased incidence.
The eucalyptus brown looper, Thyrinteina arnobia (Stoll, 1782) (Lepidoptera: Geometridae), is the main lepidopteran defoliator of eucalyptus plantations in Brazil. Outbreaks of this insect pest are common in Brazil and can affect the productivity of planted forests severely. T. arnobia caterpillars from a laboratory colony with viral infection symptoms were analyzed by electron microscopy that revealed polyhedral occlusion bodies (OBs) with several icosahedral virus particles embedded. Analysis of its genetic material showed ten segments of dsRNA, which confirmed this virus as a possible member of the genus Cypovirus. Phylogenetic analysis of the whole genome sequence revealed its close relationship with other isolates of Cypovirus 14 species and according to these results we proposed the name Thyrinteina arnobia cypovirus 14 (TharCPV-14) for this new virus isolate. Further research will be necessary in order to analyze the potential of this virus as a biopesticide.
The expression of several structural proteins from a wide variety of viruses in heterologous cell culture systems results in the formation of virus-like particles (VLPs). These VLPs structurally resemble the wild-type virus particles and have been used to study viral assembly process and as antigens for diagnosis and/or vaccine development. Tomato blistering mosaic virus (ToBMV) is a tymovirus that has a 6.3-kb positive-sense ssRNA genome. We have employed the baculovirus expression vector system (BEVS) for the production of tymovirus-like particles (tVLPs) in insect cells. Two recombinant baculoviruses containing the ToBMV wild-type coat protein (CP) gene or a modified short amino-terminal deletion (Δ 2-24 CP) variant were constructed and used to infect insect cells. Both recombinant viruses were able to express ToBMV CP and Δ 2-24 CP from infected insect cells that self-assembled into tVLPs. Therefore, the N-terminal residues (2-24) of the native ToBMV CP were shown not to be essential for self-assembly of tVLPs. We also constructed a third recombinant baculovirus containing a small sequence coding for the major epitope of the chikungunya virus (CHIKV) envelope protein 2 (E2) replacing the native CP N-terminal 2-24 amino acids. This recombinant virus also produced tVLPs. In summary, ToBMV VLPs can be produced in a baculovirus/insect cell heterologous expression system, and the N-terminal residues 2-24 of the CP are not essential for this assembly, allowing its potential use as a protein carrier that facilitates antigen purification and might be used for diagnosis. Handling Editor: Sead Sabanadzovic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.