The development of simple detection methods aimed at widespread screening and testing is crucial for many infections and diseases, including prostate cancer where early diagnosis increases the chances of cure considerably. In this paper, we report on genosensors with different detection principles for a prostate cancer specific DNA sequence (PCA3). The genosensors were made with carbon printed electrodes or quartz coated with layer-by-layer (LbL) films containing gold nanoparticles and chondroitin sulfate and a layer of a complementary DNA sequence (PCA3 probe). The highest sensitivity was reached with electrochemical impedance spectroscopy with the detection limit of 83 pM in solutions of PCA3, while the limits of detection were 2000 pM and 900 pM for cyclic voltammetry and UV–vis spectroscopy, respectively. That detection could be performed with an optical method is encouraging, as one may envisage extending it to colorimetric tests. Since the morphology of sensing units is known to be affected in detection experiments, we applied machine learning algorithms to classify scanning electron microscopy images of the genosensors and managed to distinguish those exposed to PCA3-containing solutions from control measurements with an accuracy of 99.9%. The performance in distinguishing each individual PCA3 concentration in a multiclass task was lower, with an accuracy of 88.3%, which means that further developments in image analysis are required for this innovative approach.
A new method based on complex networks is proposed for color-texture analysis. The proposal consists on modeling the image as a multilayer complex network where each color channel is a layer, and each pixel (in each color channel) is represented as a network vertex. The network dynamic evolution is accessed using a set of modeling parameters (radii and thresholds), and new characterization techniques are introduced to capt information regarding within and between color channel spatial interaction. An automatic and adaptive approach for threshold selection is also proposed. We conduct classification experiments on 5 well-known datasets: Vistex, Usptex, Outex13, CURet and MBT. Results among various literature methods are compared, including deep convolutional neural networks with pre-trained architectures. The proposed method presented the highest overall performance over the 5 datasets, with 97.7 of mean accuracy against 97.0 achieved by the ResNet convolutional neural network with 50 layers. and its results, comparisons with literature methods and discussions; finally, on Section 5 we discuss the main findings and results of the work. Theoretical Concepts and ReviewOn this section, we present the theoretical concepts of color-texture and CN. Color-Texture AnalysisThe goal of texture analysis is to study how to measure texture aspects and employ it to image characterization. Although this approach has been explored for many years, most works approach gray-level images, i.e. a single color-channel representing the pixel luminance. On this case, the multispectral information is either discarded or is not present. However, nowadays images that derive from different sources are mostly colored, for instance from the internet, surveillance cameras, satellites, microscopes, personal cameras and much more. The recent increase in computer hardware performance also makes possible to analyze larger amounts of data, allowing to keep the color information for texture analysis.In general, color-texture methods found in the literature are mostly integrative, which separate color from texture. These methods usually compute traditional gray-level descriptors from each color-channel, separately. For that, various gray-level methods can be applied or combined into an integrative descriptor. There are many graylevel methods found in literature. Classical techniques can be divided into statistical, model-based and structural methods [15]. The statistical methods were one of the first approaches which considered texture as a property to characterize images. Among statistical methods, the most common ones are those based on gray-level co-occurrence matrices [16,17] and Local Binary Patterns (LBP) [18]. Model-based methods include descriptors such as Gabor filters [19], which explore texture in the frequency domain, and Markov random field models [20]. Structural methods consists on analyzing the texture as a combination of various smaller elements, that are spatially arranged to compose the overall texture pattern. This is achieved, for...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.