Resumo -Nos sistemas de produção agrícolas no Brasil é comum a rotação de culturas soja, milho e/ou algodão, todas resistentes ao herbicida glyphosate; o que favorece a seleção de populações de capim-amargoso (Digitaria insularis) resistente ao glyphosate. Para as culturas de milho e algodão, pouco se sabe sobre alternativas para manejo químico para D. insularis. Dessa forma, torna-se pertinente a investigação da eficácia de herbicidas de mecanismos de ação alternativos ao glyphosate, aplicados em condições de pré e pós-emergência, para o controle do biótipo resistente de capim-amargoso (D. insularis), recomendados para as culturas do milho e algodão. O experimento foi desenvolvido em casa-de-vegetação, durante os meses de setembro a dezembro de 2014, utilizando um biótipo de D. insularis resistente ao glyphosate. O delineamento estatístico utilizado foi de blocos ao acaso com quatro repetições. A aplicação aconteceu quando as plantas de capim-amargoso estavam no estádio de 1 a 2 perfilhos e em pré-emergência com diferentes herbicidas. Os tratamentos que obtiveram melhores resultados em condições de pós-emergência da planta daninha foram os herbicidas nicosulfuron, imazapic + imazapyr, atrazine, haloxifop-methyl e tepraloxydim. Os herbicidas atrazine, isoxaflutole, S-metolachlor, clomazone, diuron e flumioxazin se apresentaram como pré-emergentes eficazes para o controle desta espécie. Palavras-chave: resistência, associações, graminicidas, pré-emergência, pós-emergência Abstract -In Brazil cropping systems is common a rotation between soybean, corn and / or cotton, all resistant to glyphosate, which favor the selection of glyphosate resistant sourgrass populations (Digitaria insularis). Little is known about alternative chemical control of D. insularis registered for the corn and cotton crops. Thus, it is relevant to investigate herbicides with alternative mode of action, applied in pre and post-emergence conditions, to be used for efficient control of the glyphosate resistant sourgrass biotype (D. insularis). The experiment was conducted in greenhouse, from
The soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a major soybean-yield-limiting soil-borne pathogen, especially in the Midwestern US. Weed management is recommended for SCN integrated management, since some weed species have been reported to be hosts for SCN. The increase in the occurrence of resistance to herbicides complicates weed management and may further direct ecological–evolutionary (eco–evo) feedbacks in plant–pathogen complexes, including interactions between host plants and SCN. In this review, we summarize weed species reported to be hosts of SCN in the US and outline potential weed–SCN management interactions. Plants from 23 families have been reported to host SCN, with Fabaceae including most host species. Out of 116 weeds hosts, 14 species have known herbicide-resistant biotypes to 8 herbicide sites of action. Factors influencing the ability of weeds to host SCN are environmental and edaphic conditions, SCN initial inoculum, weed population levels, and variations in susceptibility of weed biotypes to SCN within a population. The association of SCN on weeds with relatively little fitness cost incurred by the latter may decrease the competitive ability of the crop and increase weed reproduction when SCN is present, feeding back into the probability of selecting for herbicide-resistant weed biotypes. Therefore, proper management of weed hosts of SCN should be a focus of integrated pest management (IPM) strategies to prevent further eco–evo feedbacks in the cropping system.
The knowledge on the mechanism that gives a weed resistance to a particular herbicide is essential regarding scientific, academic, and practical aspects because it determines the recommendations for prevention and management of resistance in the field. Studies on the sourgrass (Digitaria insularis) glyphosate resistance mechanism in the literature have not been conclusive. Thus, the aim of this research was to study and evaluate the putative resistance mechanisms whichgives sourgrass biotypes, the ability to survive after glyphosate application. For this, 14 C-glyphosate leaf absorption and translocation were compared in the biotypes Matão (R), Campo Florido (MG), Diamantino (MT), and Iracemápolis (S) as a function of the time after its application. In addition, the possibility that the mechanism of resistance results from a mutation in the EPSPs-encoding gene was also studied. The biotypes S, R, MG, and MT absorbed similar amounts of 14 C-glyphosate. The biotypes R, MG, and MT did not present differences in 14 C-glyphosate translocation when compared to the biotype S. The sequencing of the EPSPs-encoding gene showed no mutation in the regions 106 and 182, which normally give resistance to glyphosate in the case of other species. No mutation in the EPSPs-encoding gene was observed. Therefore, they are not glyphosate resistance mechanisms for the evaluated biotypes. RESUMO-O conhecimento do mecanismo que confere a uma planta daninha resistência a um determinado herbicida é de fundamental importância tanto sob o aspecto científico e acadêmico, como prático, pois determina as recomendações de prevenção e manejo da resistência no campo. Os estudos até o momento sobre os mecanismos de resistência do capim-amargoso (Digitaria insularis) ao glyphosate existentes na literatura não são conclusivos. Assim, o intuito desta pesquisa foi estudar e avaliar os possíveis mecanismos que conferem resistência aos biótipos de capim-amargoso para sobreviver ao controle pelo glyphosate. Para isso, foi comparada a absorção foliar e translocação do 14 C-glyphosate nos biótipos de Matão (R), Campo Florido (MG), Diamantino (MT) e Iracemápolis (S), em função do tempo após sua aplicação. Além disso, também foi estudada a possibilidade de o mecanismo de resistência ser resultante de mutação no gene que codifica a EPSPs. Os biótipos S, R, MG e MT absorveram quantidades similares de 14 C-glyphosate. Os biótipos R, MG e MT não apresentaram diferenças de translocação de 14 C-glyphosate quando comparados com o biótipo S. O sequenciamento do gene que codifica a EPSPs mostrou não haver mutação nas regiões 106 e 182, as quais normalmente conferem resistência em outras espécies ao glyphosate. Nenhuma mutação no gene que codifica a EPSPs foi observada. Conclui-se que esses não são os mecanismos de resistência ao glyphosate para os biótipos avaliados.
Plant-parasitic nematodes represent a substantial constraint on global food security by reducing the yield potential of all major crops. The soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is widely distributed across important soybean production areas of the U.S., being the major soybean yield-limiting factor, especially in the Midwestern U.S. Double cropped (DC) soybean is commonly planted following winter wheat. We previously reported double-cropping soybean fields with reduced SCN counts compared to fallow at both R1 growth stage (beginning of flowering) (−31.8%) and after soybean harvest (−32.7%). To test if higher counts of beneficial and SCN antagonistic microorganisms could be correlated with the suppression of SCN in fields previously planted with wheat, three field locations with noted SCN suppression were selected for a metagenomics study. Ten subplots were selected (5 wheat and 5 fallow pre-soybean) from each location. A total of 90 soil samples were selected: 3 fields ×2 treatments × 3 timepoints × 5 replications. Three DNA markers targeted distinct microbial groups: bacteria (16S V4-V5), fungi (ITS2), and Fusarium (tef1). Amplicons were sequenced using an Illumina MiSeq platform (300 bp paired-end). Sequencing datasets were processed in R using the DADA2 pipeline. Fungal populations were affected by location in all sampling periods and differed significantly between DC and fallow plots at soybean planting and after harvest (P < 0.001). Several enriched fungal and bacterial taxa in wheat plots, including Mortierella, Exophiala, Conocybe, Rhizobacter spp., and others, were previously reported to parasitize SCN and other plant-parasitic nematodes, suggesting a potential role of beneficial microbes in suppression of SCN in soybean fields double-cropped with wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.