Industrial automation platforms are experiencing a paradigm shift. New technologies are making their way in the area, including embedded real-time systems, standard local area networks like Ethernet, Wi-Fi and ZigBee, IP-based communication protocols, standard service oriented architectures (SOAs) and Web services. An automation system will be composed of flexible autonomous components with plug & play functionality, self configuration and diagnostics, and autonomic local control that communicate through standard networking technologies. However, the introduction of these new technologies raises important problems that need to be properly solved, one of these being the need to support real-time and quality-of-service (QoS) for real-time applications. This paper describes a SOA enhanced with real-time capabilities for industrial automation. The proposed architecture allows for negotiation of the QoS requested by clients from Web services, and provides temporal encapsulation of individual activities. This way, it is possible to perform an a priori analysis of the temporal behavior of each service, and to avoid unwanted interference among them. After describing the architecture, experimental results gathered on a real implementation of the framework (which leverages a soft real-time scheduler for the Linux kernel) are presented, showing the effectiveness of the proposed solution. The experiments were performed on simple case studies designed in the context of industrial automation applications
Model-based design is an important approach for embedded software. The method starts from a mathematical representation of the design problem and derives the software implementation from this representation. The model that has had most success especially for control dominated application is synchronous reactive. While this model simplifies the way of dealing with concurrency by decoupling functional and timing aspects, when implemented, it may be inefficient since the synchronous assumption implies constraints that are stronger than needed. We present in this paper a method for improving the efficiency of the software design process, by relaxing computation constraints, while preserving the synchronous computation semantics, with the introduction of a particular inter-task communication mechanism. We show how this mechanism can be implemented on single processor, multi processor and distributed implementation platforms.
Fault-tolerant electronic sub-systems are becoming a standard requirement in the automotive industrial sector as electronics becomes pervasive in present cars. We address the issue of fault tolerant chip architectures for automotive applications. We begin by reviewing fault-tolerant architectures commonly used in other industrial domains where faulttolerant electronics has been a must for a number of years, e.g., the aircraft manufacturing industrial sector. We then proceed to investigate how these architecture could be implemented on a single chip and we compare them with a metric that combines traditional terms such as cost, performance and fault coverage with flexibility, i.e. the ability of adapting to changing requirements and capturing a wide range of applications, an emerging criterion for platform design. Finally, we describe in some details a cost effective dual lockstep platform that can be used as a single fail-operational unit or as two fail-silent channels trading fault-tolerance for performance.
We present the mathematical formalism and. the verification methodology of the contract-based model developed in the framework of the SPEEDS project. SPEEDS aims at developing methods and tools to support "speculative design", a design methodology in which distributed designers develop different aspects of the overall system, in a concurrent but controlled way. Our generic mathematical model of contract supports this style of development. This is achieved by focusing on behaviors, by supporting the notion of "rich component" where functional and non-functional aspects of the system can be considered and combined, by representing rich components via their set of associated contracts, and by formalizing the process of component composition
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsācitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright Ā© 2024 scite LLC. All rights reserved.
Made with š for researchers
Part of the Research Solutions Family.