The present work contributes to establishing the role of hydrogenation and of the substrates in the aluminium-induced crystallization process of amorphous germanium layers. For such a purpose, four series of a-Ge(Al) samples, deposited under identical nominal conditions, were studied: hydrogenated samples, H-free samples, and samples deposited on crystalline silicon and on glass substrates, respectively. On purpose, the impurity concentration was kept at a doping level (10⁻⁵<[Al/Ge]<2 × 10⁻³). Furthermore, the films were submitted to isochronal cumulative thermal annealing in the 200-550 °C range. Raman scattering spectroscopy was used to characterize the crystallization process. The role of Al impurity as a precursor seed for the crystallization of a-Ge:H has been clearly established, confirming that the metal-induced crystallization (MIC) phenomenon occurs at an atomic level. Moreover, it has been found that hydrogenation and the periodic nature of the substrate play a fundamental role in the appearance of crystal seeds at low temperatures. The evolution of crystallization with annealing temperature and the analysis of the distribution of crystallite sizes indicate that the formation of crystal seeds occurs at the amorphous film-substrate interface. The importance of fourfold-coordinated aluminium as the embryo of nanocrystal formation is discussed.
Aim:The aim of this study was to investigate the effect of phosphoric acid etching and the dentin pre-treatment with sodium hypochlorite (NaOCl) on the push-out bond strength between fiber post and root canal dentin.Materials and Methods:Root canals of 48 human incisors were selected, post spaces were prepared and assigned to four groups: G1-37% phosphoric acid (15 s); G2-5.25% NaOCl (2 min) +37% phosphoric acid (15 s); G3-37% phosphoric acid (60 s); and G4-5.25% NaOCl (2 min) +37% phosphoric acid (60 s). Fiber post cementation was performed with two-step etch-and-rinse adhesive system/dual-cured resin cement according to the manufacturer's recommendation. After 24 h, each root was sectioned transversally into three slices (cervical, middle and apical) and the bond strength of each section was determined using a push-out bond strength test. Morphology analysis of the bonded interface was evaluated using a scanning electron microscopy. Push-out strength data (MPa) were analyzed by Analysis of Variance and Tukey-Kramer (α = 0.05).Results:Considering the NaOCl pre-treatment, no statistically significant differences were observed among groups; however, when the phosphoric acid was applied during 60 s in the apical portion without NaOCl pre-treatment, the bond strength was statistically significant increased.Conclusion:The NaOCl pre-treatment did not improve the bond strength of adhesive luting cement to root canal dentin. The findings suggest that the use of 37% phosphoric acid for 60 s may have a beneficial effect on bond strength in the apical root third.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.